3,649 research outputs found

    The Dismissal of Tenured Faculty for Reasons of Financial Exigency

    Get PDF

    Robust observer for uncertain linear quantum systems

    Get PDF
    In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is generally unrealistic. Therefore, in this paper, we consider a class of linear quantum systems subjected to time-varying norm-bounded parametric uncertainties and then propose a robust observer such that the variance of the estimation error is guaranteed to be within a certain bound. Although in the linear case much of classical control theory can be applied to quantum systems, the quantum robust observer obtained in this paper does not have a classical analogue due to the system's specific structure with respect to the uncertainties. Moreover, by considering a typical quantum control problem, we show that the proposed robust observer is fairly robust against a parametric uncertainty of the system even when the other estimators--the optimal Kalman filter and risk-sensitive observer--fail in the estimation.Comment: 11 pages, 1 figur

    Convergence is Only Skin Deep: Craniofacial Evolution in Electric Fishes from South America and Africa (Apteronotidae and Mormyridae)

    Get PDF
    Apteronotidae and Mormyridae are species-rich clades of weakly electric fishes from Neotropical and Afrotropical freshwaters, respectively, known for their high morphological disparity and often regarded as a classic example of convergent evolution. Here, we use CT-imaging and 3D geometric morphometrics to quantify disparity in craniofacial morphologies, and to test the hypothesis of convergent skull-shape evolution in a phylogenetic context. For this study, we examined 391 specimens representing 78 species of Apteronotidae and Mormyridae including 30 of 37 (81%) of all valid genera with the goal to sample most of the craniofacial disparity known in these clades. We found no overlap between Apteronotidae and Mormyridae in the skull-shape morphospace using PCA and a common landmark scheme, and therefore no instances of complete phenotypic convergence. Instead, we found multiple potential instances of incomplete convergence, and at least one parallel shift among electric fish clades. The greatest components of shape variance in both families are the same as observed for most vertebrate clades: heterocephaly (i.e., opposite changes in relative sizes of the snout and braincase regions of the skull), and heterorhynchy (i.e., dorsoventral changes in relative snout flexion and mouth position). Mormyrid species examined here exhibit less cran- iofacial disparity than do apteronotids, potentially due to constraints associated with a larger brain size, ecological constraints related to food-type availability. Patterns of craniofacial evolution in these two clades depict a complex story of phenotypic divergence and convergence in which certain superficial similarities of external morphology obscure deeper osteological and presumably developmental differences of skull form and function. Among apteronotid and mormyrid electric fishes, craniofa- cial convergence is only skin deep

    Effect of Nitrogen Application Timing on Corn Production Using Subsurface Drip Irrigation

    Get PDF
    The use of subsurface drip irrigation (SDI) in row-crop agriculture is increasing because of potential increases in water and nutrient use efficiency. Research-based information is needed to manage N applications through SDI systems in field corn (Zea-mays L.) production. This study was conducted to assess the effect of different in-season SDI system N application timings on corn production and residual soil N03-N at the University of Nebraska-Lincoln West Central Research and Extension Center in North Platte, Neb, on a Cozad silt loam (fine-silty, mixed, mesic Fluventic Haplustoll). We evaluated the effect of three N application timing methods (varying percentages of the total N rate [48% of total N] applied at the VIO, VT, and R3 growth stages, in addition to uniform N applications [52% of total NJ over all treatments at preplant, planting, and V14 growth stage) at two N application rates (University of Nebraska-Lincoln [UNL] recommended rate and the UNL rate minus 20%) on corn grain and biomass yield and end-of-study distribution of residual soil N03-N. In 2006, there were no significant differences in corn grain yields between the two N application rates. In 2007, the grain yield under the UNL.recommended N rate was significantly higher (190 kg ha-1) than the UNL-minus-20%N rate. The average grain yield for this study was close to the predicted yields (based on average 5-year historic yields + a 5% yield increase), indicating that ,orn production under SDI is satisfactory. In 2006 and 2007, grain yield and biomass production for the N application timing treatments were not significantly different (P \u3e 0.05). The application of 13% of the total N at as late as R3 did not result in decreased yields. The lack of response to differentN application timing treatments indicates that there is flexibility in N application timing for corn production under SDI. The distribution of N03-N in the 0- to 0.9-m and 0.9- to 1.8-m soil profiles was not significantly different among all the treatments

    Effect of Nitrogen Application Timing on Corn Production Using Subsurface Drip Irrigation

    Get PDF
    The use of subsurface drip irrigation (SDI) in row-crop agriculture is increasing because of potential increases in water and nutrient use efficiency. Research-based information is needed to manage N applications through SDI systems in field corn (Zea-mays L.) production. This study was conducted to assess the effect of different in-season SDI system N application timings on corn production and residual soil N03-N at the University of Nebraska-Lincoln West Central Research and Extension Center in North Platte, Neb, on a Cozad silt loam (fine-silty, mixed, mesic Fluventic Haplustoll). We evaluated the effect of three N application timing methods (varying percentages of the total N rate [48% of total N] applied at the VIO, VT, and R3 growth stages, in addition to uniform N applications [52% of total NJ over all treatments at preplant, planting, and V14 growth stage) at two N application rates (University of Nebraska-Lincoln [UNL] recommended rate and the UNL rate minus 20%) on corn grain and biomass yield and end-of-study distribution of residual soil N03-N. In 2006, there were no significant differences in corn grain yields between the two N application rates. In 2007, the grain yield under the UNL.recommended N rate was significantly higher (190 kg ha-1) than the UNL-minus-20%N rate. The average grain yield for this study was close to the predicted yields (based on average 5-year historic yields + a 5% yield increase), indicating that ,orn production under SDI is satisfactory. In 2006 and 2007, grain yield and biomass production for the N application timing treatments were not significantly different (P \u3e 0.05). The application of 13% of the total N at as late as R3 did not result in decreased yields. The lack of response to differentN application timing treatments indicates that there is flexibility in N application timing for corn production under SDI. The distribution of N03-N in the 0- to 0.9-m and 0.9- to 1.8-m soil profiles was not significantly different among all the treatments

    Mitochondrial DNA Variation among \u3ci\u3eMuscidifurax\u3c/i\u3e spp. (Hymenoptera: Pteromalidae), Pupal Parasitoids of Filth Flies (Diptera)

    Get PDF
    Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing analyses were used to characterize an amplicon of ~625 bp in 4 of the 5 nominate species of Muscidifurax Girault & Sanders, pupal parasitoids of muscoid flies. A single polymorphic nucleotide site was observed among 2 samples of M. raptor Girault & Sanders. No sequence variation was observed among 3 samples of M. raptorellus Kogan & Legner. The sequence of M. uniraptor Kogan & Legner was identical to that of M. raptorellus. Nucleotide divergence among the Muscidifurax spp. ranged from 0.14 to 0.18 substitutions per nucleotide. Muscidifurax zaraptor Kogan & Legner exhibited multiple haplotypes, 2 of which were characterized by sequencing and 4 others by PCR-RFLP. The sequenced haplotypes differed by 0.08 nucleotide substitutions per site. Restriction site analysis indicated that nucleotide divergence ranged from 0.03 to 0.10 among all 6 haplotypes. Analysis of progeny from individual females indicated that the observed variation in M. zaraptor was caused by multiple haplotypes within individuals rather than differentiation among individuals. These results bring to question the specific status of M. uniraptor and indicate that the genus is native to the Western Hemisphere, and not introduced with their primary host, Musca domestica L, as previously proposed. Heteroplasmy and translocation of aportion of the mitochondrial genome to the nuclear genome are discussed as possible causes for the variation observed in M. zaraptor
    • …
    corecore