15 research outputs found

    Proteomic profiling of the thrombin-activated canine platelet secretome (CAPS).

    Get PDF
    Domestic dogs share the same environment as humans, and they represent a valuable animal model to study naturally-occurring human disease. Platelet proteomics holds promise for the discovery of biomarkers that capture the contribution of platelets to the pathophysiology of many disease states, however, canine platelet proteomic studies are lacking. Our study objectives were to establish a protocol for proteomic identification and quantification of the thrombin-activated canine platelet secretome (CAPS), and to compare the CAPS proteins to human and murine platelet proteomic data. Washed platelets were isolated from healthy dogs, and stimulated with saline (control) or gamma-thrombin (releasate). Proteins were separated by SDS-page, trypsin-digested and analyzed by liquid chromatography and tandem mass spectrometry (MS). CAPS proteins were defined as those with a MS1-abundance ratio of two or more for releasate vs. unstimulated saline control. A total of 1,918 proteins were identified, with 908 proteins common to all dogs and 693 characterized as CAPS proteins. CAPS proteins were similar to human and murine platelet secretomes and were highly represented in hemostatic pathways. Differences unique to CAPS included replacement of platelet factor 4 with other cleavage products of platelet basic protein (e.g. interleukin-8), novel proteins (e.g. C-C motif chemokine 14), and proteins in relatively high (e.g. protease nexin-1) or low (e.g. von Willebrand factor) abundance. This study establishes the first in-depth platelet releasate proteome from healthy dogs with a reference database of 693 CAPS proteins. Similarities between CAPS and the human secretome confirm the utility of dogs as translational models of human disease, but we also identify differences unique to canine platelets. Our findings provide a resource for further investigations into disease-related CAPS profiles, and for comparative pathway analyses of platelet activation among species

    Equid herpesvirus type 1 activates platelets.

    Get PDF
    Equid herpesvirus type 1 (EHV-1) causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression) and platelet microvesiculation (increased small events double positive for CD41 and Annexin V). Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM). A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis that occurs in clinically infected horses and provides a new mechanism by which viruses activate hemostasis
    corecore