13 research outputs found

    The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells

    Get PDF
    Upregulation of functional voltage-gated Na+ channels (VGSCs) occurs in metastatic human breast cancer (BCa) in vitro and in vivo. The present study aimed to ascertain the specific involvement of the 'neonatal' splice variant of Nav1.5 (nNav1.5), thought to be predominant, in the VGSC-dependent invasive behaviour of MDA-MB-231 cells. Functional activity of nNav1.5 was suppressed by two different methods targeting nNav1.5: (i) small interfering RNA (siRNA), and (ii) a polyclonal antibody (NESO-pAb); effects upon migration and invasion were determined. nNav1.5 mRNA, protein and signalling were measured using real-time PCR, Western blotting, and patch clamp recording, respectively. Treatment with the siRNA rapidly reduced (by similar to 90%) the level of nNav1.5 (but not adult Nav1.5) mRNA, but the protein reduction was much smaller (similar to 30%), even after 13 days. Nevertheless, the siRNA reduced peak VGSC current density by 33%, and significantly increased the cells' sensitivity to nanomolar tetrodotoxin (TTX). Importantly, the siRNA suppressed in vitro migration by 43%, and eliminated the normally inhibitory effect of TTX. Migrated MDA-MB-231 cells expressed more nNav1.5 protein at the plasma membrane than non-migrated cells. Furthermore, NESO-pAb reduced migration by up to 42%, in a dose-dependent manner. NESO-pAb also reduced Matrigel invasion without affecting proliferation. TTX had no effect on cells already treated with NESO-pAb. It was concluded that nNav1.5 is primarily responsible for the VGSC-dependent enhancement of invasive behaviour in MDA-MB-231 cells. Accordingly, targeting nNav1.5 expression/activity may be useful in clinical management of metastatic BCa

    Transgenic overexpression of HSP56 does not result in cardiac hypertrophy nor protect from ischaemia/reperfusion injury

    No full text
    Heat shock proteins are known to be induced during and following different forms of cardiac stress. It has previously been shown that their expression is beneficial for the heart following trauma such as ischaemia–reperfusion (I/R) injury. Heat shock protein 56 (HSP56) belongs to the family of FK506-binding immunophilin proteins and is found in steroid receptor complexes, notably the glucocorticoid receptor. We have previously shown that HSP56 and other HSPs are induced in cardiac myocytes treated with cardiotrophin-1, a cytokine with potent hypertrophic and protective properties on cardiac cells. The hypertrophic action of cardiotrophin-1 on cardiac cells is dependent on HSP56 induction and overexpression of HSP56 is sufficient for inducing hypertrophy in cardiac cells. To investigate this phenomenon in vivo, we have generated transgenic mice overexpressing HSP56 and assessed them for the development cardiac hypertrophy and resistance of their hearts to I/R-injury by Langendorff perfusion. Mice generated demonstrated stable, yet varying expression levels of HSP56. Initial characterisation identified a sex-specific phenotype where male overexpressing mice exhibited a moderate, but significant, reduced body weight compared to wild-type controls. In ex vivo stress analyses we found, unexpectedly, that significant overexpression of HSP56 does not induce myocardial hypertrophy and nor does it protect the intact heart from I/R-injury. These observations now suggest a more intricate HSP56-Sp. Cardiophenotype that requires further studies to determine if HSP56 is necessary in mediating hypertrophy induced by other myocardial stimuli.<br/

    Cardiac expression of Brn-3a and Brn-3b POU transcription factors and regulation of Hsp27 gene expression

    No full text
    The Brn-3 family of transcription factors play a critical role in regulating expression of genes that control cell fate, including the small heat shock protein Hsp27. The aim of this study was to investigate the relationship between Brn-3a and Brn-3b and Hsp27 expression in the developing rodent heart. Brn-3a and Brn-3b were detected from embryonic days 9.5–10.5 (E9.5–E10.5) in the mouse heart, with significant increases seen later during development. Two isoforms (long and short) of each protein were detected during embryogenesis and postnatally. Brn-3a messenger RNA (mRNA) and protein were localized by E13.0 to the atrio-ventricular (AV) valve cushions and leaflets, outflow tract (OFT), epicardium and cardiac ganglia. By E14.5, Brn-3a was also localised to the septa and compact ventricular myocardium. An increase in expression of the long Brn-3a(l) isoform between E17 and adult coincided with a decrease in expression of Brn-3b(l) and a marked increase in expression of Hsp27. Hearts from Brn-3a−/− mice displayed a partially penetrant phenotype marked by thickening of the endocardial cushions and AV valve leaflets and hypoplastic ventricular myocardium. Loss of Brn-3a was correlated with a compensatory increase in Brn-3b and GATA3 mRNA but no change in Hsp27 mRNA. Reporter assays in isolated cardiomyocytes demonstrated that both Brn-3a and Brn-3b activate the hsp27 promoter via a consensus Brn-3-binding site. Therefore, Brn-3 POU factors may play an important role in the development and maintenance of critical cell types and structures within the heart, in part via developmental regulation of myocardial Hsp27 expression. Furthermore, Brn-3a may be necessary for correct valve and myocardial remodelling and maturation

    Primary Splenic and Nodal Marginal Zone Lymphoma:

    No full text

    III. Abteilung.

    No full text

    III. Abteilung.

    No full text

    Network biology concepts in complex disease comorbidities

    No full text
    corecore