16 research outputs found

    \u3cem\u3eVaccinium corymbodendron\u3c/em\u3e Dunal as a bridge between taxonomic sections and ploidies in \u3cem\u3eVaccinium\u3c/em\u3e: A work in progress

    Get PDF
    The species V. corymbodendron of section Pyxothamnus has shown value as a potential bridge between taxonomic sections and ploidies in Vaccinium when involved as either a first generation or second generation parent. Tetraploid V. corymbodendron has hybridized successfully with 2x and 4x section Cyanococcus species and with 2x section Vitis-idaea. Hybridizations with other sections are currently being tested. Second generation allotetraploid V. corymbodendron - V. vitis-idaea hybrids have hybridized successfully with 4x section Oxycoccus (cranberry), 4x section Cyanococcus (blueberry), and 2x section Vitis-idaea (lingonberry). It appears that these allotetraploid hybrids may allow gene movement among these diverse sections at the 4x level. Further test-crosses are being made to evaluate the range of crossability of 4x V. corymbodendron and the V. corymbodendron allotetraploids with other taxonomic sections of Ericaceae

    RNA-seq combined with a bulked-segregant analysis identifies candidate genes for the waxy coating on blueberry fruit

    Get PDF
    The most significant difference between blueberries with a light blue fruit color and black fruit color is the visible layer of an epicuticular waxy coating. This layer functions in disease defense and prevention of water loss. In this study, we constructed a northern-adapted rabbiteye hybrid breeding population, ‘Nocturne’ x T 300, which segregated for fruit color (light blue versus black). We screened this population and selected plants of each extreme phenotype, waxy- coated plants with light blue colored fruit versus non-waxy plants with black colored fruit, then isolated RNA from fruit tissue of each bulk, respectively. We sequenced the transcriptome of each bulk using RNA-seq, which resulted in a total of 167,093,354 reads for both libraries combined. We de novo assembled this data set into 171,678 contigs and used the assembled transcriptome as a reference for differential expression analysis using EdgeR. A total of 515 differentially expressed genes were identified with at least a four-fold difference in expression, and efforts were made to functionally annotate them using publicly available databases. From these, one excellent candidate ‘waxy’ gene has emerged, which we are investigating further

    Assessment and comparison of rhizosphere communities in cultivated Vaccinium spp. provide a baseline for study of causative agents in decline

    Get PDF
    It has long been recognized that the community of organisms associated with plant roots is a critical component of the phytobiome and can directly or indirectly contribute to the overall health of the plant. The rhizosphere microbial community is influenced by a number of factors including the soil type, the species of plants growing in those soils, and in the case of cultivated plants, the management practices associated with crop production. Vaccinium species, such as highbush blueberry and American cranberry, are woody perennials that grow in sandy, acidic soils with low to moderate levels of organic matter and a paucity of nutrients. When properly maintained, fields planted with these crops remain productive for many years. In some cases, however, yields and fruit quality decline over time, and it is suspected that degenerating soil health and/or changes in the rhizosphere microbiome are contributing factors. Determining the assemblage of bacterial and fungal microorganisms typically associated with the rhizosphere of these crops is a critical first step toward addressing the complex issue of soil health. We hypothesized that since blueberry and cranberry are in the same genus and grow in similar soils, that their associated rhizosphere microbial communities would be similar to each other. We analyzed the eukaryotic (primarily fungal) and bacterial communities from the rhizosphere of representative blueberry and cranberry plants growing in commercial fields in New Jersey. The data presented herein show that while the bacterial communities between the crops is very similar, the fungal communities associated with each crop are quite different. These results provide a framework for examining microbial components that might contribute to the health of Vaccinium spp. crops in New Jersey and other parts of the northeastern U.S

    There and back again: historical perspective and future directions for Vaccinium breeding and research studies

    Get PDF
    The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related trait

    Expression of the Yeast Δ-9 Fatty Acid Desaturase in Nicotiana tabacum

    No full text

    Interactions between cranberries and fungi: the proposed function of organic acids in virulence suppression of fruit rot fungi

    Get PDF
    Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fungi remain mostly asymptomatic until the fruit begins to mature in late August. Temporal fluctuations and quantitative differences in selected organic acid profiles between fruit of six cranberry genotypes during the growing season were observed. The concentration of benzoic acid in fruit increased while quinic acid decreased throughout fruit development. In general, more rot-resistant genotypes showed higher levels of benzoic acid early in fruit development and more gradual decline in quinic acid levels than that observed in the more rot-susceptible genotypes. We evaluated antifungal activities of selected cranberry constituents and found that most bioactive compounds either had no effects or stimulated growth or reactive oxygen species (ROS) secretion of four tested cranberry fruit rot fungi, while benzoic acid and quinic acid reduced growth and suppressed secretion of ROS by these fungi. We propose that variation in the levels of ROS suppressive compounds, such as benzoic and quinic acids, may influence virulence by the fruit rot fungi. Selection for crops that maintain high levels of virulence suppressive compounds could yield new disease resistant varieties. This could represent a new strategy for control of disease caused by necrotrophic pathogens that exhibit a latent or endophytic phase

    Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation

    Get PDF
    BACKGROUND: There has been increased consumption of blueberries in recent years fueled in part because of their many recognized health benefits. Blueberry fruit is very high in anthocyanins, which have been linked to improved night vision, prevention of macular degeneration, anti-cancer activity, and reduced risk of heart disease. Very few genomic resources have been available for blueberry, however. Further development of genomic resources like expressed sequence tags (ESTs), molecular markers, and genetic linkage maps could lead to more rapid genetic improvement. Marker-assisted selection could be used to combine traits for climatic adaptation with fruit and nutritional quality traits. RESULTS: Efforts to sequence the transcriptome of the commercial highbush blueberry (Vaccinium corymbosum) cultivar Bluecrop and use the sequences to identify genes associated with cold acclimation and fruit development and develop SSR markers for mapping studies are presented here. Transcriptome sequences were generated from blueberry fruit at different stages of development, flower buds at different stages of cold acclimation, and leaves by next-generation Roche 454 sequencing. Over 600,000 reads were assembled into approximately 15,000 contigs and 124,000 singletons. The assembled sequences were annotated and functionally mapped to Gene Ontology (GO) terms. Frequency of the most abundant sequences in each of the libraries was compared across all libraries to identify genes that are potentially differentially expressed during cold acclimation and fruit development. Real-time PCR was performed to confirm their differential expression patterns. Overall, 14 out of 17 of the genes examined had differential expression patterns similar to what was predicted from their reads alone. The assembled sequences were also mined for SSRs. From these sequences, 15,886 blueberry EST-SSR loci were identified. Primers were designed from 7,705 of the SSR-containing sequences with adequate flanking sequence. One hundred primer pairs were tested for amplification and polymorphism among parents of two blueberry populations currently being used for genetic linkage map construction. The tetraploid mapping population was based on a cross between the highbush cultivars Draper and Jewel (V. darrowii is also in the background of 'Jewel'). The diploid mapping population was based on a cross between an F(1 )hybrid of V. darrowii and diploid V. corymbosum and another diploid V. corymbosum. The overall amplification rate of the SSR primers was 68% and the polymorphism rate was 43%. CONCLUSIONS: These results indicate that this large collection of 454 ESTs will be a valuable resource for identifying genes that are potentially differentially expressed and play important roles in flower bud development, cold acclimation, chilling unit accumulation, and fruit development in blueberry and related species. In addition, the ESTs have already proved useful for the development of SSR and EST-PCR markers, and are currently being used for construction of genetic linkage maps in blueberry
    corecore