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Cranberry fruit are a rich source of bioactive compounds that may function as constitutive

or inducible barriers against rot-inducing fungi. The content and composition of these

compounds change as the season progresses. Several necrotrophic fungi cause

cranberry fruit rot disease complex. These fungi remain mostly asymptomatic until the

fruit begins to mature in late August. Temporal fluctuations and quantitative differences

in selected organic acid profiles between fruit of six cranberry genotypes during the

growing season were observed. The concentration of benzoic acid in fruit increased

while quinic acid decreased throughout fruit development. In general, more rot-resistant

genotypes (RR) showed higher levels of benzoic acid early in fruit development and

more gradual decline in quinic acid levels than that observed in the more rot-susceptible

genotypes. We evaluated antifungal activities of selected cranberry constituents and

found that most bioactive compounds either had no effects or stimulated growth or

reactive oxygen species (ROS) secretion of four tested cranberry fruit rot fungi, while

benzoic acid and quinic acid reduced growth and suppressed secretion of ROS by these

fungi. We propose that variation in the levels of ROS suppressive compounds, such as

benzoic and quinic acids, may influence virulence by the fruit rot fungi. Selection for crops

that maintain high levels of virulence suppressive compounds could yield new disease

resistant varieties. This could represent a new strategy for control of disease caused by

necrotrophic pathogens that exhibit a latent or endophytic phase.

Keywords: benzoic acid, bioactivity, cranberry fruit rot disease, pathogenicity, quinic acid, reactive oxygen

species, resistance, Vaccinium

Introduction

Many pathogens possess a latent phase where they grow within tissues of hosts without causing
harm or resulting in expression of disease symptoms (Luo and Michailides, 2001; Sauer et al., 2002;
Vega et al., 2010; O’Connell et al., 2012; Tadych et al., 2012; Delaye et al., 2013). It is only after
this period of latent development that disease expression may become evident. Our previous study
(Tadych et al., 2012) suggested that the majority of cranberry fruit rot necrotrophic fungi possess
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a latent phase in which they grow inside cranberry fruit
asymptomatically. Fruit rot fungi may coexist in developing
ovaries as endophytes or they may exist alone in ovaries. After
this phase of symptomless development, usually shortly before
or at fruit maturation, disease expression in the form of rot may
become evident.

Fungal diseases, particularly the cranberry fruit rot disease
complex, have been serious problems limiting fruit production
from the beginning of commercial cultivation of American
cranberry (Vaccinium macrocarpon Aiton) (Halsted, 1889;
Stevens, 1924; Shear et al., 1931; Oudemans et al., 1998;
Tadych et al., 2012). Among the most common fungi causing
cranberry fruit rot disease are Coleophoma empetri (Rostr.)
Petr., Colletotrichum acutatum J. H. Simmonds, Colletotrichum
gloeosporioides (Penz.) Penz. & Sacc., Fusicoccum putrefaciens
Shear, Phomopsis vaccinii Shear, N. E. Stevens & H. F. Bain,
Phyllosticta vaccinii Earle and Physalospora vaccinii (Shear) Arx
& E. Müll (Oudemans et al., 1998; Polashock et al., 2009; Tadych
et al., 2012).

Defensive mechanisms against pathogens in many animals
and plants involve the direct action of reactive oxygen species
(ROS), such as superoxide (O−

2 ), hydroxyl radical (OH
•), and

hydrogen peroxide (H2O2) (Foyer and Harbinson, 1994; Wu
et al., 1997; Missall et al., 2004; Silar, 2005). It has been
shown that ROS are generated as anti-pathogen agents and
as warning signals to adjacent host cells, triggering other host
defensive reactions (Lamb and Dixon, 1997; Wojtaszek, 1997).
Pathogens often trigger an increase in ROS called “oxidative
burst,” which results in the accumulation of ROS in tissues of
the plant proximal to the pathogen (Apel and Hirt, 2004). The
accumulation of ROS may cause damage to cells by peroxidizing
lipids and disrupting structural proteins, enzymes, and nucleic
acids, and may subsequently lead to cell death (Apel and Hirt,
2004).

Previous research has associated ROS secretion by fungal
necrotrophs with induction of cell death and necrosis in host
tissues (Álvarez-Loayza et al., 2011; Heller and Tudzynski, 2011).
The linkage between fungal ROS secretion and initiation of the
hypersensitive response in host plant tissues provides a target for
identification of natural plant constituents that will prolong the
non-destructive latent phase of the cranberry rot fungi.

Many bioactive compounds can function as constitutive or
inducible barriers against microbial pathogens, and bioactive
compound composition can change in response to microbial
attack (Dixon and Paiva, 1995; Grayer and Kokubun, 2001;
Miranda et al., 2007; Carlsen et al., 2008; Koskimäki et al.,
2009; White and Torres, 2010; Oszmiañski and Wojdył, 2014).
Cranberry fruit are known to be rich sources of nutrients and
bioactive compounds, including phenolics, flavonoids, sugars,
organic acid, etc., (Fellers and Esselen, 1955; Schmid, 1977;
Coppola et al., 1978; Mäkinen and Söderling, 1980; Hong and
Wrolstad, 1986; Zuo et al., 2002; Zheng and Wang, 2003;
Cunningham et al., 2004; Shahidi and Naczk, 2004; Vvedenskaya
et al., 2004; Singh et al., 2009; Neto and Vinson, 2011), any of
which could have activity against rot-inducing fungi (Marwan
and Nagel, 1986a,b; Cushnie and Lamb, 2005). Previous research
suggests that fungi that cause cranberry fruit rot disease colonize

surface layers of cranberry ovaries early in flower development
(Zuckerman, 1958; Tadych et al., 2012) and induce disease in
mature fruit tissues possibly by secretion of ROS into fruit,
resulting in a cascade of events in fruit tissues that leads to cell
death and fruit rot. According to this model, suppression of
growth and ROS secretion by fungi will result in suppression of
rot disease. We hypothesize that fruit rot resistant selections of
cranberry are resistant to rot due to organic acid constituents
that enable them to suppress growth and ROS production by
cranberry fruit rot fungi. We further hypothesize that levels of
organic acids may change as fruit mature, leading to a release
of ROS suppression and increase in fungal growth and disease
incidence in fruit. Objectives for this study were: (1) to identify
naturally occurring chemicals in cranberry fruit that suppress
growth of cranberry fruit rot fungi, (2) to determine whether
secretion of ROS by these fruit pathogens could be stimulated
or inhibited by these cranberry constituents, (3) to investigate
the organic acid profiles in the fruit of rot-resistant and rot-
susceptible cranberry genotypes at intervals throughout fruit
maturation that may coincide with fruit rot occurrence.

Materials and Methods

Reference Compounds and Other Chemicals
Agarose (A6013), L-Alanine (A7627), Benzoic acid (242381),
3,3′-diaminobenzidine (D5905), Folic acid (F7876), Formic acid
(F0507), D-(–)-Fructose (F0127), D-(+)-Glucose (BDH0230),
Glycine (G7126), Horseradish peroxidase (P6782), DL-Malic acid
(M0875), D-Mannitol (M4125), N-Z-Soyr Peptone (P1265),
Pectin from apple (P8471), Phosphoric acid, D-(–)-Quinic
acid (138622), Starch from rice (S7260), and Sucrose (50389)
were purchased from Sigma-Aldrich Chemical Co. (St. Louis,
MO). Acetonitrile (AX0145) was obtained from EMD Millipore
(Billercia, MA), Citric acid anhydrous (A940) from Fisher
Scientific (Fair Lawn, NJ), Sorbitol (V045-07) from J. T. Baker –
Mallinckrodt Baker, Inc. (Phillipsburg, NJ) and Proflo Premium
Quality Cottonseed-derived Protein Nutrient (069061) from
Trades Protein, Southern Cotton Oil Company (Memphis, TN).
All solvents were of HPLC grade and water was of Milli-Q quality
(Millipore Corp., Bedford, MA).

Fungal and Plant Material Used
Cranberry fruit rot fungi used in this study were collected from
infected cranberry ovaries in 2009 at the Philip E. Marucci Center
for Blueberry and Cranberry Research and Extension of Rutgers
University located in Chatsworth, New Jersey (39◦42′50.75"N,
74◦30′33.07"W; altitude 12m) as described by Tadych et al.
(2012) and stored in −80◦C until this study. After removing
from freezer the fungi were regrown first in potato dextrose broth
(PDB) and then re-cultured on potato dextrose agar (PDA) at
room temperature (22◦C) for 10 days.

Fruit of the American cranberry used in the present study were
represented by four rot-resistant, i.e., ‘US88-1’, ‘US88-30’, ‘US88-
79’, ‘US89-3’, and two rot-susceptible, i.e., ‘Mullica Queen’ (MQ)
and ‘Stevens’ (ST), genotypes growing at the Philip E. Marucci
Center for Blueberry and Cranberry Research and Extension
at Rutgers University (Vorsa and Johnson-Cicalese, 2012). The

Frontiers in Microbiology | www.frontiersin.org 2 August 2015 | Volume 6 | Article 835

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Tadych et al. Organic acids in cranberry-fungal interactions

plants were planted in randomized block design with 54 rows and
12 columns with one genotype per plot established in 2009. The
experimental plots from which the plant material was collected
were not fungicide treated and were cultivated in an identical way
during the 2012 and 2013 growing season.

On July 11, 2012 green cranberry fruit were collected
from US88-79 and ST genotypes, at the phenological stage of
“small fruit” (Brown and McNeil, 2006) and transferred to the
laboratory. The fruit were ground in liquid nitrogen and added to
the basal medium (0.5% agarose + 0.5% glucose) to reach a final
concentration of 10% fruit tissue in the medium (Table 1) and
tested for the impact on growth and ROS secretion of cranberry
fruit rot fungi. In addition, in order to test the influence of
sterilization on antimicrobial activity of the fruit, in one case
raw fruit tissue was added to an already autoclaved medium [raw
rot-resistant genotype green berries – raw resistant (RR); raw rot-
susceptible genotype green berries – raw susceptible (RS)], and
in another case the fruit tissue was added to a medium before
medium autoclaving [autoclaved rot-resistant genotype green
berries – autoclaved resistant (AR); autoclaved rot-susceptible
genotype green berries – autoclaved susceptible (AS)].

TABLE 1 | Cranberry constituents screened for inhibitory effects on fungal

growth and hydrogen peroxide production by selected cranberry fruit rot

fungi.

Compound Group Compound Concentration (%)

Reported* Used**

Amino acids Alanine 0.1 0.1

Glycine 0.1 0.1

Organic acids Benzoic acid 0.02–0.065 0.1

Citric acid 0.5–1.3 0.02

Folic acid N/A 0.1

Malic acid 0.26–1.14 0.02

Quinic acid 0.5–1.62 1.0

Reducing sugars Fructose 0.9–1.5 1.0

Glucose 3.7–5.0 4.0

Disaccharide Sucrose 0.215–0.275 0.5

Polysaccharide Pectin 1.2 1.0

Starch 0.8–2.6 1.5

Sugar alcohols Mannitol 0.05 0.5

Sorbitol 0.05 0.5

Protein Peptone N/A 0.1

Protein (0.1)/N/A 0.1

GREEN CRANBERRY FRUIT

Rot-resistant genotype Raw tissues N/A 10.0

Autoclaved tissues N/A 10.0

Rot-susceptible genotype Raw tissues N/A 10.0

Autoclaved tissues N/A 10.0

*Concentration of a particular compound found in cranberry fruit (as previously reported:

Fellers and Esselen, 1955; Schmid, 1977; Coppola et al., 1978; Mäkinen and Söderling,

1980; Hong and Wrolstad, 1986; Zuo et al., 2002; Zheng and Wang, 2003; Cunningham

et al., 2004; Shahidi and Naczk, 2004; Vvedenskaya et al., 2004; Singh et al., 2009; Neto

and Vinson, 2011); N/A, not applicable.

**Concentration of a particular compound tested (added to the basal medium—0.5%

agarose and 0.5% glucose).

To study the within-season variation of organic acids (OA)
in the fruit, material for each plant-genotype was collected from
3 plots in late July (Jul 26), two times in August (Aug 6 and
Aug 23), and two times in September (Sep 5 and Sep 16).
After harvesting, the berries were transferred to the laboratory,
immediately frozen at −80◦C and stored until analyzed (within
6 months of harvest). From each sample harvested from an
individual plot approximately 2 g (±1 g depending on fruit
availability) of berries were randomly selected for chemical
analysis.

Effect of the Tested Compounds on the Radial
Growth of Selected Fungal Pathogens
Sixteen compounds previously reported (Table 1; Fellers and
Esselen, 1955; Schmid, 1977; Coppola et al., 1978; Mäkinen and
Söderling, 1980; Hong and Wrolstad, 1986; Zuo et al., 2002;
Zheng and Wang, 2003; Cunningham et al., 2004; Shahidi and
Naczk, 2004; Vvedenskaya et al., 2004; Singh et al., 2009; Neto and
Vinson, 2011) as naturally occurring in cranberry fruit and four
combinations of the green cranberry fruit tissues representing
rot-resistant and rot-susceptible genotypes were incorporated
into basal medium to study their effects on fungal radial colony
growth. Plates (85mm diam.) containing 20ml of a media with
test compounds (Table 1) were prepared by incorporating filter-
sterilized compounds into a basal medium after autoclaving.
A 10-mm plug taken from edge of an actively-growing 10-
day-old culture of four selected isolates of cranberry fruit rot
fungi, i.e., Coleophoma empetri, Colletotrichum gloeosporioides,
Phyllosticta vaccinii and P. vaccinii growing on PDA, was used
to inoculate the plates containing each of the media. The basal
medium was used as a control. The plates were incubated at
22◦C in darkness. The radial growth of each fungus on plates
was measured 10 days after inoculation along perpendicular
axes. The study was performed with three replicates for each
fungus/medium combination.

Detection of H2O2 Secreted into Agar by Fungi
To visualize secretion and accumulation of ROS as H2O2 into
agar, the plates with the 10-day-old fungal colonies were stained
by flooding plates with 6ml of 100mM potassium phosphate
buffer, pH 6.9, 2.5mM 3,3′-diaminobenzidine tetrachloride
(DAB) and 5 purpurogallin units ml−1 of horseradish peroxidase
(Type VI-A), swirled to cover the entire surface, and incubated
at room temperature for 10 h (Pick and Keisari, 1980; Munkres,
1990). To stop the color development the plates were rinsed in
sterile dH2O. Visible ROS reaction zones were measured and
each plate was photographed.

Extraction and Quantification of Total Benzoic
Acid, Citric Acid, Malic Acid, and Quinic Acid in
Developing Cranberry Fruit
Extraction of Organic Acids
Fruit thawed for 1 h at 22◦C were homogenized using
Waring™ Laboratory Blenders (Model 31BL91 with MC-1
Mini Container, Waring Commercial, Torrington, CT) prior to
analyses. Homogenized fruit samples were diluted with dH2O in
ratio approximately 1:10 and mixed by shaking. The mixture was
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then sonicated (Branson 3510, Branson Ultrasonics Corporation,
Danbury, CT) for 10min, transferred and left on a stirrer at
60 rpm for 10min in a water bath (Precision 2870, Thermo
Electron Corporation, Waltham, MA) with temperature of 90◦C.
The suspension was filtered with Whatman filter paper and
1ml of the supernatant was centrifuged (AccuSpin Micro 17R,
Fisher Scientific, Osterode, Germany) at 13,300 g for 10min
at 4◦C. From each centrifuged sample 300µl of supernatant
was transferred into an HPLC vial and analyzed for organic
acids.

High-performance Liquid Chromatography (HPLC)

Analysis
Aqueous extracts obtained from cranberry fruit were analyzed
for identification and quantification of organic acids (OA) using
a Dionex R© HPLC system (Dionex, Sunnyvale, CA) equipped
with AS50 Autosampler, AS50 Thermal Compartment, PDA-100
Photodiode Array Detector and GP40 Gradient Pump. For all
standards and extracts, a Waters Atlantis dC18 column (5.0µm
particle size; 100A; 250mm length × 4.6mm ID; Waters Co.,
Milford, MA) with a security guard cartridge (Phenomenex, Inc.,
Torrance, CA) was used; the column temperature was 25◦C. A
binary solvent system with solvent A: 0.5% phosphoric acid in
water and solvent B: 0.5% phosphoric acid in acetonitrile was
used with isocratic elution of 0% B from 0 to 11min; linear
gradient of 0 to 20% B from 11 to 13min; 20 to 60% B from 13
to 18min; 60 to 80% B from 18 to 20min; isocratic elution of
80% B from 20 to 25min; linear gradient of 80 to 20% B from 25
to 28min; 20 to 0% B from 28 to 30min and isocratic elution of
0% B from 30 to 40min at a flow rate of 0.6ml min−1 with 20µl
sample injection volume.

Chromatograph peaks were identified taking into account
the retention time and the UV-Vis absorption spectra of
the peaks with those of corresponding standards. Photodiode
Array Detector was monitored at three wavelengths, 210 nm
for citric (CA) and malic (MA) acids, 214 nm for quinic acid
(QA), and 230 nm for benzoic acid (BA). Data acquisition
and processing were performed using Dionex Chromatography
Software—Chromeleon Client version 6.80 (Dionex, Sunnyvale,
CA). Quantification of all the organic acids was based on a
standard curve prepared with BA, CA, MA, and QA. The
contents of organic acids were expressed as milligrams of organic
acid per gram of fresh weight (fw). The samples were analyzed in
duplicates.

Calibration Curves
Concentration of organic acids in cranberry ovary extractions
was determined based on calibration curves. The calibration
curves were constructed using the standard solutions. Known
amounts of BA, CA,MA, andQA adding to double distilled water
resulted in stock solutions and their serial dilutions were used
to prepare standard solutions. Except for BA where 16 standard
concentrations were prepared, eight standard concentrations
were prepared for the other three acids and analyzed by HPLC
in triplicate. Calibration curves were generated by plotting peak
area (mAU) against acid concentration (mg ml−1) with linear
regression analysis.

Statistical Analyses
Results were expressed as mean ± standard error of the mean
(SEM). Significant differences (α = 0.01) between means were
estimated by use of analysis of variance (ANOVA), General
Linear Model (GLM) followed by the Ryan-Einot-Gabriel-
Welsch Q multiple range test. The effects of plant-genotype and
within-season variation were investigated with different dates
analyzed independently. The data analysis was generated using
SAS/STAT software, Version 9.3 of the SAS System for Windows
(SAS Institute Inc., Cary, NC, USA, 2011).

Results

Effect of the Cranberry Compounds on the Radial
Growth of Selected Cranberry Fungi
The results from in vitro screening of compounds previously
identified in cranberry fruit (Table 1) on growth of selected
cranberry fruit rot fungi, Coleophoma empetri, Colletotrichum
gloeosporioides, Phyllosticta vaccinii, and Physalospora vaccinii,
are shown in Figures 1A–D. Whereas, many of the compounds
had no effect on the respective fungi, effects of some of the
compounds differed greatly among the species. Starch (STA),
peptone (PEP), and addition of raw susceptible (RS), autoclaved
susceptible (AS), and autoclaved resistant (AR) tissue of green
fruit significantly stimulated (p < 0.0001; α = 0.01) growth
of Coleophoma empetri, Phyllosticta vaccinii, and Physalospora
vaccinii (Figures 1A,C,D). Protein (PRO) also significantly
stimulated (p < 0.0001; α = 0.01) growth of Phyllosticta vaccinii
(Figure 1C). Alanine (ALA), benzoic acid (BA), and quinic acid
(QA) significantly inhibited (p < 0.0001; α = 0.01) growth
of Coleophoma empetri (Figure 1A), whereas addition of amino
acids (ALA, GLY), organic acids (BA, CA, FA, MA, QA), pectin
(PEC) and any kind of cranberry green fruit tissue (RR, AR, RS,
and AS) in the medium significantly inhibited (p < 0.0001;
α = 0.01) growth of Colletotrichum gloeosporioides compared
to that of the control medium (Figure 1B) but did not inhibited
other fungi.

Detection of H2O2 Secreted into Culture Media
by Fungi
Most of the compounds tested had no effects or stimulated H2O2

secretion by fungi (Table 1; Figures 1E–H, 2). However, we
identified chemical compounds of cranberry fruit that inhibited
H2O2 secretion by the fungi.

Addition of BA and QA into the medium completely
inhibited H2O2 secretion by Coleophoma empetri, Colletotrichum
gloeosporioides, Phyllosticta vaccinii, and Physalospora vaccinii
(Figures 1E–H, 2). Addition of citric acid (CA) and malic acid
(MA) also significantly (p < 0.0001; α = 0.01) reduced secretion
of H2O2 into the medium by Colletotrichum gloeosporioides
and Phyllosticta vaccinii (Figures 1F,G), and by Colletotrichum
gloeosporioides, Phyllosticta vaccinii, and Physalospora vaccinii,
respectively (Figures 1F–H, 2). However, folic acid (FA) and
PEC added to the medium significantly (p < 0.0001; α =

0.01) stimulated production of H2O2 by Phyllosticta vaccinii
(Figure 1G). Medium amended with glucose showed significant
(p < 0.0001; α = 0.01) reduction of H2O2 secretion by
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FIGURE 1 | Growth (green) of Coleophoma empetri (A),

Colletotrichum gloeosporioides (B), Phyllosticta vaccinii (C), and

Physalospora vaccinii (D) and secretion of hydrogen peroxide (red)

into the media by Coleophoma empetri (E), Colletotrichum

gloeosporioides (F), Phyllosticta vaccinii (G), and Physalospora

vaccinii (H), respectively. CTR, control (dark green or dark red); ALA,

alanine; GLY, glycine; BA, benzoic acid; CA, citric acid; FA, folic acid; MA,

malic acid; QA, quinic acid; FRU, fructose; GLU, glucose; SUC, sucrose;

PEC, pectin; STA, starch; MAN, mannitol; SOR, sorbitol; PEP, N-Z-Soy®

Peptone; PRO, Proflo Premium Quality Cottonseed protein; RR, raw

rot-resistant genotype green berries; AR, autoclaved rot-resistant green

berries; RS, raw rot-susceptible cranberry green berries; AS, autoclaved

susceptible cranberry green berries. Values are the average of radial

growth of colonies (mm; along perpendicular axes) ± standard error of

the mean or reactive oxygen species (ROS) reaction zone (mm) ±

standard error of the mean of hydrogen peroxide (3,3′-diaminobenzidine

tetrachloride/horseradish peroxidase staining) secreted into the media in

triplicates (N = 3). The same letters are not significantly different (P < 0.01;

α = 0.01) as determined by the Ryan-Einot-Gabriel-Welsch Q (REGWQ)

multiple range test. Organic acids (benzoic and quinic acids) show

inconsistent suppression of growth but consistent suppression of ROS in

all rot fungi tested. Amino acids, sugars, polysaccharides, sugar alcohols,

and proteins often increase fungal growth and show no effect or increase

ROS secretion by fruit rot fungi.
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FIGURE 2 | Cranberry fruit rot fungi Coleophoma empetri (1),

Colletotrichum gloeosporioides (2), Phyllosticta vaccinii (3),

Physalospora vaccinii (4) grown on basal medium (0.5% agarose and

0.5% glucose; control) before staining (A), basal medium (0.5%

agarose and 0.5% glucose; control) (B), and basal medium with:

mannitol (C), malic acid (D), benzoic acid (E), or quinic acid (F); and

then stained with 3,3′-diaminobenzidine tetrachloride/horseradish

peroxidase to visualize hydrogen peroxide secretion into the media.

Red pigment around fungal colonies on stained control, mannitol and malic

acid media indicates high production of hydrogen peroxide. Benzoic acid and

quinic acid inhibit hydrogen peroxide production in all rot fungi tested.

Phyllosticta vaccinii (Figure 1G). Addition of both, STA and
PEP to the media significantly (p < 0.0001; α = 0.01)
reduced of H2O2 secretion by Coleophoma empetri (Figure 1E)
but stimulated significantly (p < 0.0001; α = 0.01) secretion
H2O2 by Colletotrichum gloeosporioides (Figure 1F); medium
amended with STA significantly (p < 0.0001; α = 0.01) reduced
secretion of H2O2 by and Phyllosticta vaccinii (Figure 1G).
Media amended with ALA, glycine (GLY), sucrose (SUC),
or PEC significantly stimulated (p < 0.0001; α = 0.01)
H2O2 secretion by Physalospora vaccinii compared to that of
the control medium (Figure 1H). Presence of RR significantly
(p < 0.0001; α = 0.01) inhibited secretion of H2O2 into
the medium by all tested fungi (Figures 1E–H); addition of RS,
AR, and AS significantly (p < 0.0001; α = 0.01) inhibited
secretion of H2O2 by Phyllosticta vaccinii (Figure 1G), while

addition of RS significantly (p < 0.0001; α = 0.01) inhibited
secretion of H2O2 into the medium by Physalospora vaccinii
(Figure 1H).

Quantification of Organic Acids in Developing
Cranberry Fruit
Our results showed that the levels of BA, QA, and CA in
developing cranberry fruit were significantly different depending
on a cranberry genotype and a fruit development stage (Table 2).

Benzoic Acid
Comparing the plant genotypes within the collection date
revealed a 5.7-, 4.0-, 1.4-, 2.5-, and 6-fold variation in BA content
between the genotypes collected at a particular collection date
(Table 2). At the first collection date (July 26), a significantly
higher (p < 0.0003; α = 0.01) level of BA was found in
the genotype US88-79 than in the US88-1, US89-3, and ST
genotypes. On August 6 significantly higher (p < 0.0009; α =

0.01) BA content was found again in the genotype US88-79 and
US88-30 than in ST. Starting with the collection date of August
23, due to severe fruit rot occurrence, there were no more fruit of
the rot-susceptible genotypes (MQ and ST) available for further
analysis; the number of fruit of the rot-resistant genotype US88-
1 was limited as well. On both collection dates, August 23 and
September 5, there was no significant variation in BA content
between all analyzed rot-resistant genotypes (RR). At the last
collection date (September 15), content of BA in fruit of the
genotype US88-30, US88-79, and US89-3 was significantly higher
(p < 0.0004; α = 0.01) than in the genotype US88-1. During the
collection period (from July 26 to September 15), the mean level
of BA in the developing fruit increased 29.4-fold, from 0.0044 to
0.1295mg g−1 (Table 2; Figure 3A).

Analysis of BA content in the first two collection dates
showed significant differences between investigated genotypes
and collection dates; a significantly higher (p < 0.0001; α = 0.01)
level of BA was found in fruit of the genotype US88-79 than in
fruit of ST and US88-1 genotypes (Figure 4A). Concentration of
BA increased over 300% (Figure 4B) and was significantly higher
(p < 0.0001; α = 0.01) in the second collection date (August 6)
than in the first collection date (July 26).

Citric Acid
The level of CA at the first collection date (July 26) varied and
was significantly higher (p < 0.0001; α = 0.01) in the US88-
1, US88-30, and US89-3 genotypes than in MQ (Table 2). There
were no significant differences in CA content found in fruit of
all analyzed genotypes at the second (August 6) and the last
(September 15) collection date. On August 23 (p < 0.0003;
α = 0.01) and September 5 (p < 0.0001; α = 0.01) significantly
higher CA concentration was found in the genotype US89-3 and
in the genotype US88-1 than in all other analyzed genotypes,
respectively. However, the result obtained for the genotype US88-
1 was based on one extract sample only. As the fruit developed,
the mean level of CA in the cranberry fruit first increased from
8.897mg g−1 on July 26 to 10.949mg g−1 on August 23 and then
gradually decreased to 9.811mg g−1 by the end of the growing
season (September 15) (Table 2; Figure 3B).
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TABLE 2 | Concentrations (mg g−1 fresh weight) of benzoic acid (BA), citric acid (CA), malic acid (MA), and quinic acid (QA) in developing fruit of six

cranberry genotypes collected during growing season.

Acid Genotype ID July 26 August 6 August 23 September 5 September 15

BA* US88-1 (R) 0.0030± 0.0006b 0.0107± 0.0017ab 0.0336± 0.0047a (N = 4) 0.0356±0.0000a (N = 1) 0.0275±0.0010b (N = 2)

US88-30 (R) 0.0043± 0.0003ab 0.0197± 0.0034a 0.0483± 0.0020a 0.0875±0.0075a 0.1816±0.0096a (N = 2)

US88-79 (R) 0.0091± 0.0016a 0.0172± 0.0014a 0.0405± 0.0063a 0.0685±0.0126a 0.1221±0.0126a (N = 4)

US89-3 (R) 0.0037± 0.0004b 0.0160± 0.0016ab 0.0370± 0.0037a 0.0786±0.0130a 0.1436±0.0080a

MQ (S) 0.0047± 0.0005ab 0.0154± 0.0033ab NS NS NS

ST (S) 0.0016± 0.0005b 0.0049± 0.0007b NS NS NS

Mean 0.0044± 0.0006 0.0140± 0.0010 0.0404± 0.0024 0.0760±0.0065 0.1295±0.0135

CA US88-1 (R) 9.777± 0.5943a 9.240± 0.6713a 9.996± 0.2138b (N = 4) 20.116±0.0000a (N = 1) 10.029±0.4750a (N = 2)

US88-30 (R) 10.072± 0.4968a 10.203± 0.1319a 10.442± 0.2651b 9.622±0.3856b 10.010±0.0542a (N = 2)

US88-79 (R) 8.902± 0.2451ab 8.594± 0.2371a 10.305± 0.4255b 10.459±0.7227b 8.737±0.9502a (N = 4)

US89-3 (R) 9.100± 0.4089a 9.837± 0.2387a 12.735± 0.4712a 11.025±0.3531b 10.388±0.2627a

MQ (S) 6.970± 0.3136b 8.346± 0.4525a NS NS NS

ST (S) 8.560± 0.2478ab 9.889± 0.3520a NS NS NS

Mean 8.897± 0.2285 9.352± 0.1913 10.949± 0.2997 10.882±0.5920 9.811±0.3327

MA** US88-1 (R) 4.974± 0.1741 4.605± 0.2750 4.721± 0.2871(N = 4) 6.585±0.0000 (N = 1) 5.769±0.5406 (N = 2)

US88-30 (R) 3.744± 0.1216 3.916± 0.1346 4.419± 0.1341 5.193±0.1530 5.347±0.7554 (N = 2)

US88-79 (R) 4.235± 0.1498 3.986± 0.2385 4.133± 0.2838 4.271±0.4589 4.413±0.3479 (N = 4)

US89-3 (R) 3.485± 0.2870 4.354± 0.1001 4.695± 0.1872 4.925±0.3624 5.284±0.1570

MQ (S) 5.057± 0.4476 5.277± 0.2497 NS NS NS

ST (S) 3.980± 0.2336 4.157± 0.2262 NS NS NS

Mean 4.246± 0.1421c 4.382± 0.1123bc 4.471± 0.1163bc 4.890±0.2209ab 5.114±0.1964a

QA US88-1 (R) 23.161± 1.0241bc 22.950± 1.3976ab 19.810± 1.4333b (N = 4) 18.168±0.0000b (N = 1) 14.781±0.1255b (N = 2)

US88-30 (R) 29.345± 1.2202ab 24.030± 1.0686ab 19.919± 0.5484b 18.405±0.4315b 22.546±4.6692a (N = 2)

US88-79 (R) 21.586± 0.7371c 19.687± 0.5946b 21.379± 0.8786b 19.295±1.0706ab 14.653±0.3509b (N = 4)

US89-3 (R) 31.105± 1.2272a 27.026± 0.3810a 25.469± 0.7081a 24.890±0.7899a 21.247±0.4361a

MQ (S) 29.167± 2.0389ab 22.660± 1.5704ab NS NS NS

ST (S) 24.615± 1.3822abc 20.841± 0.9330b NS NS NS

Mean 26.496± 0.7824 22.866± 0.5672 21.811± 0.6426 20.722±0.7908 18.625±1.0899

Results are expressed as mean ± standard error of the mean (mg g−1 fw); N = 6 unless indicated otherwise; MQ, Mullica Queen; ST, Stevens; R, rot-resistant genotype; S, rot-

susceptible genotype; NS, no sample available due to fruit rot.

*Values with the same letters within a compound and within a column indicate that the genotypes are not significantly different (P < 0.01; α = 0.01) as determined by the Ryan-Einot-

Gabriel-Welsch Q (REGWQ) multiple range test.

**No significant genotype by collection date interaction found but there was significant genotype and collection date effects (P < 0.01; α = 0.01).

The genotype US88-30 was found to contain significantly
higher (p < 0.0001; α = 0.01) level of CA in young fruit (the
first two collection periods) than MQ and US88-79 genotypes
(Figure 4C) and there were no significant differences observed
between the collection dates (Figure 4D).

Malic Acid
There was no significant genotype by collection date interaction
for MA content in fruit of the investigated genotypes, comparing
to all collection dates (Table 2; Figure 3C). Statistical analysis
revealed that during the season significantly (p < 0.0001; α =

0.01) higher concentration of MA was found in MQ genotype
than in the genotype US88-79 and ST (Figure 5A). However,

fruit of the MQ genotype, due to the severe fruit rot, were only
available for analysis for the first two collection dates (July 26 and
August 6). The average concentration of MA (when comparing
all investigated genotypes combined for each date) increased as
the season progressed (Figure 5B) and reached significantly (p <

0.0001; α = 0.01) higher concentration (5.114mg g−1) on the
final collection date (September 15).

Young fruit of the MQ genotype had a significantly (p <

0.0001; α = 0.01) higher MA content than the young fruit of the
genotype US88-30, US89-3, US88-79, and ST while comparing to
the first two collection dates (Figure 4E). However, there were no
significant differences in MA content between the two collection
dates found (Figure 4F).
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FIGURE 3 | Average (± standard error of the mean) concentration (mg

g−1 fw) of benzoic acid (A), citric acid (B), malic acid (C), and quinic

acid (D) in the fruit of rot-resistant (N = 4) and rot-susceptible (N = 2)

cranberry genotypes during growing season.

Quinic Acid
The content of QA in all analyzed samples varied from 14.6
to 31.1mg g−1 (Table 2). There was a 1.3- to 1.5-fold variation
found in the level of QA between the investigated genotypes at
each collection date. On July 26, a significantly (p < 0.0001;
α = 0.01) higher level of QA was found in the genotype US89-
3 compared to US88-1 and US88-79 genotypes. At the second
collection date significantly (p < 0.0008; α = 0.01) higher QA

FIGURE 4 | Concentration (mg g−1 fresh weight) of benzoic acid (A,B),

citric acid (C,D), malic acid (E,F), and quinic acid (G,H), respectively, in

young fruit of six cranberry genotypes collected 2 weeks apart at the

beginning of fruit development. Values are expressed as mean ± standard

error of the mean of field triplicates and laboratory duplicates (N = 6). Values

with the same letters are not significantly different (P < 0.01; α = 0.01) as

determined by the Ryan-Einot-Gabriel-Welsch Q (REGWQ) multiple range test.

content was found again in the US89-3 genotype than in the
genotype US88-79 and ST. A significantly (p < 0.0004; α = 0.01)
higher level of QA was found in the genotype US89-3 on August
23 than in the other three genotypes analyzed. On September
5, the genotype US89-3 showed significantly (p < 0.0002; α =

0.01) higher QA content than the genotype US88-1 and US88-
30. At the last collection date, content of QA was significantly
(p < 0.0019; α = 0.01) higher in fruit of the genotype US89-3
and US88-30 than in US88-1 and US88-79 genotypes. However,
genotype US88-30 was represented by two samples only. On
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FIGURE 5 | Concentration (mg g−1 fresh weight) of malic acid

in developing fruit of six cranberry genotypes (A) collected as

the growing season progresses (B). Values are expressed as

mean ± standard error of the mean; values for collection date

represent all genotypes combined for each date; values with the

same letters are not significantly different (P < 0.01; α = 0.01) as

determined by the Ryan-Einot-Gabriel-Welsch Q (REGWQ) multiple

range test.

average, the mean level of QA in fruit decreased about 30% as the
fruit mature, from 26.496mg g−1 on July 26 to 18.625mg g−1 on
September 15 (Table 2; Figure 3D).

In comparing the concentrations of QA in the young fruit
during the first two collection dates, the genotype US89-3 was
found to contain significantly (p < 0.0001; α = 0.01) higher
levels of QA than fruit of genotypes US88-79, US88-1, and ST
(Figure 4G). The levels of QA in fruit showed a tendency to fall
between these two dates and were significantly (p < 0.0001;
α = 0.01) lower on August 6 (Figure 4H).

Discussion

Most of the tested cranberry compounds (Table 1) were found to
increase, stimulate or only slightly inhibit H2O2 secretion, when
compared to the control (Figures 1E–H). BA and QA, when
added to the medium, completely inhibited H2O2 production.
In addition, green fruit extract from unautoclaved cranberry
fruit of RR significantly inhibited H2O2 secretion compared
to that from the more rot-susceptible genotypes and/or the
control (Figures 1E–H). Autoclaving of fruit resulted in loss of
inhibitory activity; autoclaving may have caused denaturation or
degradation of QA and other inhibitors.

Our data show that levels of QA in cranberries of the six tested
genotypes decreased throughout fruit development (Table 2) and
the RR showed a more gradual decline in QA levels during
the first 2 weeks of our study than that observed in the more
rot-susceptible genotypes (Figure 3D). At the same time, the
content of BA in fruit increased as the fruit developed. In general,
more RR showed higher levels of BA early in fruit development,
i.e., in the first 2 weeks of our study (Table 2; Figure 3A). The
levels and trends for BA and QA we found to be consistent in
two growing seasons (unpublished data). Chemical and physical
factors are thought to account for differences often observed

in disease resistance among different fruit development stages
(Prusky, 1996). Kalt and McDonald (1996) found that contents
of CA and QA in Lowbush blueberry (Vaccinium angustifolium
Aiton) were lower in overripe compared to underripe berries,
while the concentration of MA was at similar levels among
all maturity groups. These authors (Kalt and McDonald, 1996)
also reported significant cultivar differences in CA, QA, but not
MA. Observed decreases in content of QA and increases in BA
levels in cranberry fruit as the season progresses may be related
to increasing levels of fruit infection by fungi (Tadych et al.,
2012). The high content of QA in cranberry fruit might indicate
its importance as a chemical defense compound (Grayer and
Kokubun, 2001) and perhaps also as a precursor for antimicrobial
secondary metabolites (Weinstein et al., 1961; Boudet, 1980;
Hawkins et al., 1993; Richards et al., 2006; Pero et al., 2008;
Dewick, 2011; Tzin et al., 2012; Ghosh et al., 2014).

Mechanism of Action
Our experiments were focused on understanding the effects
of cranberry compounds on pathogenicity behavior (e.g., ROS
secretion) of the cranberry fungi. However, earlier research has
associated H2O2 and other ROS secretion by fungal necrotrophs
with the initial trigger of localized cell death and necrosis of host
tissues (Govrin and Levine, 2000). Prevention of ROS secretion
by fungi may prevent the initiation of the hypersensitivity
response in fruit tissues. The likely mechanism of action for
the ROS suppression effect of BA and QA is through inhibition
of oxidase and oxygenase enzymes that are responsible for
production of reactive oxygen. Among the oxidase enzymes of
fungi are laccases that play roles in pathogenesis, detoxification,
polyphenolic, and lignin degradation (Claus, 2004; Solomon
et al., 2014). Generalized inhibitory activity to oxidase enzymes
suggests the potential that plant produced ROS-suppressive
compounds like BA may also inhibit oxidases in plants. BA
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is well documented to have a direct inhibitory effect on the
cyclooxygenases (COX) of animals (Marnett andKalgutkar, 2004;
Corazzi et al., 2005). One of the known cyclooxygenases is COX-
2, an inducible isoform of cyclooxygenase enzyme responsible for
the production of pro-inflammatory prostaglandins in inflamed
and neoplastic tissues. In animals the inhibition of the COX-
2 enzyme by BA results in reduced ROS production with a
consequent reduction in inflammation. Because BA has this
effect, it is generally considered to be an anti-inflammatory.
Among plant oxygenases are pathogen-induced oxygenases
(PIOX) (Sanz et al., 1998). PIOX enzymes produce ROS
defensively in response to invasion by pathogens. The PIOX
enzymes of plants have been shown to have considerable
homology to COX-2 in animals (Jahabbakhsh-Godehkahriz et al.,
2013). Because of these similarities, it seems likely that oxygenase
inhibitors, like BA and QA, may have ROS suppressive effects in
both fungus and host tissues, essentially suppressing both fungal
and plant secretion of ROS and preventing the hypersensitive
response in the host.

Growth Inhibitory Action of Benzoic Acid and
Quinic Acid
Benzoic acid naturally occurs in both plant and animal
tissues with low or no toxicity evident. However, it is known
to inhibit some bacteria and fungi by reducing respiration
(Warth, 1991). Because of this effect, BA and its salts, calcium
benzoate, potassium benzoate, and sodium benzoate, are used
at levels ranging from 0.03 to 0.3% as preservatives in food
products, beverages, dentifrices, cosmetics, and pharmaceuticals
to prevent decomposition bymicrobial growth (Krebs et al., 1983;
FAO/WHO Food Standards, 2013).

Benzoic acid is known as one of the simplest of phytoalexins
(Harborne, 1983; Grayer and Kokubun, 2001). The resistance
of immature apples to Neonectria ditissima (Tul. & C. Tul.)
Samuels & Rossman (syn. Nectria galligena Bres.) is thought to
be related to the presence of BA in apples, which is accumulated
by the apple after fungal infection (Brown and Swinburne, 1971,
1973; Seng et al., 1985). Exogenous applications of BA in vitro
(at 9mM concentration) completely inhibited the growth of
Bipolaris oryzae (Breda de Haan) Shoemaker (the casual agent of
rice brown spot disease) and under field conditions (at 20mM),
significantly reduced both disease severity and incidence in
plant leaves as well as led to a significant increase in grain
yield (Shabana et al., 2008). Similarly, BA at a concentration of
20mM significantly reduced growth and spore germination of
Fusarium oxysporum Schlect. emend. Snyd & Hans, Fusarium
solani (Mart.) Sacc. and Rhizoctonia solani Khun (Shahda, 2000).
Diversity and successional changes in populations of fungi in

cranberry fruits were observed as the fruits developed and the
season progressed (Tadych et al., 2012). The fungi possibly
stimulate biochemical responses in the fruit leading to synthesis
of BA in the fruit. To the best of our knowledge the role of BA as
a phytoalexin in cranberry was never documented, although its
function as an antifungal compound is well known. As this study
shows, young, green cranberry fruits did not accumulate BA, but
its content gradually increased as the season progressed.

Özçelik et al. (2011) found that QA may also act as an
antimicrobial agent. However, other studies were contrary and
indicated that QA alone did not have inhibitory effects, or
even stimulated growth of various microorganisms (Clague and
Fellers, 1934; Valle, 1957; Sokolova, 1963; Kallio et al., 1985;
Bartz et al., 2013). Growth rate of an organism is not necessarily
an indication of its pathogenicity and virulence. Although QA
stimulated growth of Rhizoctonia solani, it significantly reduced
fungal production of plant growth regulators belonging to
phenylacetic acid metabolic complex, and as a result, suppressed
disease development on tomato plants (Bartz et al., 2013).
In our study, QA and BA added to the medium did not
entirely suppress growth of the fruit rot fungi, consistent with
previous observations, but what might be more significant for
fruit rot disease development, they completely inhibited H2O2

production and its secretion into the medium (Figures 1, 2E,F)
and may have inhibited secretion of other virulence factors.

Conclusions

Based on our studies, further examination of organic acids for
their virulence inhibition effects seems warranted. To reduce
plant disease it may be a viable strategy to select crop plants
that maintain higher levels of organic acids or other potential
virulence suppressors through plant development. We propose
that organic acids and other compounds should be examined as
potential modulators of virulence in fungi and defensive reaction
in hosts.
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