211 research outputs found

    New Dromaeosaurids (Dinosauria: Theropoda) from the Lower Cretaceous of Utah, and the Evolution of the Dromaeosaurid Tail

    Get PDF
    Background: The Yellow Cat Member of the Cedar Mountain Formation (Early Cretaceous, Barremian? – Aptian) of Utah has yielded a rich theropod fauna, including the coelurosaur Nedcolbertia justinhofmanni, the therizinosauroid Falcarius utahensis, the troodontid Geminiraptor suarezarum, and the dromaeosaurid Utahraptor ostrommaysorum. Recent excavation has uncovered three new dromaeosaurid specimens. One specimen, which we designate the holotype of the new genus and species Yurgovuchia doellingi, is represented by a partial axial skeleton and a partial left pubis. A second specimen consists of a right pubis and a possibly associated radius. The third specimen consists of a tail skeleton that is unique among known Cedar Mountain dromaeosaurids. Methodology/Principal Findings: Y. doellingi resembles Utahraptor ostrommaysorum in that its caudal prezygapophyses are elongated but not to the degree present in most dromaeosaurids. The specimen represented by the right pubis exhibits a pronounced pubic tubercle, a velociraptorine trait that is absent in Y. doellingi. The specimen represented by the tail skeleton exhibits the extreme elongation of the caudal prezygapophyses that is typical of most dromaeosaurids. Here we perform a phylogenetic analysis to determine the phylogenetic position of Y. doellingi. Using the resulting phylogeny as a framework, we trace changes in character states of the tail across Coelurosauria to elucidate the evolution of the dromaeosaurid tail. Conclusions/Significance: The new specimens add to the known diversity of Dromaeosauridae and to the known diversity within the Yellow Cat paleofauna. Phylogenetic analysis places Y. doellingi in a clade with Utahraptor, Achillobator, and Dromaeosaurus. Character state distribution indicates that the presence of intermediate-length caudal prezygapophyses in that clade is not an evolutionarily precursor to extreme prezygapophyseal elongation but represents a secondary shortening of caudal prezygapophyses. It appears to represent part of a trend within Dromaeosauridae that couples an increase in tail flexibility with increasing size

    FIRST REPORT ON DINOSAUR TRACKS FROM THE BURRO CAN YON FORMATION, SAN JUAN COUNTY, UTAH, USA – EVIDENCE OF A DIVERSE, HITHERTO UN KNOWN LOWER CRETACEOUS DINOSAUR FAUNA

    Get PDF
    The newly discovered White Mesa tracksite in the Burro Canyon Formation represents a snap shot of a diverse, Lower Cretaceous dinosaur fauna from south-eastern Utah. The tracks were found at a construction site where the sand stone had been bull dozed and broken up. All tracks were found as deep, well-preserved natural casts on the under side of the sand stone slabs. Individual theropod tracks are 19–57 cm in length; one peculiar track shows evidence of a possible pathological swelling in the middle of digit III and an apparently didactyl track is tentatively as signed to a dromaeosaurid. Individual sauropod tracks are found with pes lengths of 36–72 cm, and interestingly, three distinct shapes of manus tracks, ranging from wide banana shaped to rounded and hoof-like. Ornithopods are represented with individual tracks 18–37 cm in length; a single track can possibly be attributed to the thyreophoran ichnogenus Deltapodus. Zircon U-Pb dating places the track-bearing layer in the Barremian, contemporary to the lower Yellow Cat Member of the Cedar Mountain Formation, which has a similar faunal composition based on both tracks and body fossils. This new track-fauna demonstrates the existence of a diverse dinosaurian assemblage in the lower part of the Burro Canyon Formation, which hitherto is not known to yield skeletal remains

    New Basal Iguanodonts from the Cedar Mountain Formation of Utah and the Evolution of Thumb-Spiked Dinosaurs

    Get PDF
    BACKGROUND: Basal iguanodontian dinosaurs were extremely successful animals, found in great abundance and diversity almost worldwide during the Early Cretaceous. In contrast to Europe and Asia, the North American record of Early Cretaceous basal iguanodonts has until recently been limited largely to skulls and skeletons of Tenontosaurus tilletti. METHODOLOGY/PRINCIPAL FINDINGS: Herein we describe two new basal iguanodonts from the Yellow Cat Member of the Cedar Mountain Formation of eastern Utah, each known from a partial skull and skeleton. Iguanacolossus fortis gen. et sp. nov. and Hippodraco scutodens gen. et sp. nov. are each diagnosed by a single autapomorphy and a unique combination of characters. CONCLUSIONS/SIGNIFICANCE: Iguanacolossus and Hippodraco add greatly to our knowledge of North American basal iguanodonts and prompt a new comprehensive phylogenetic analysis of basal iguanodont relationships. This analysis indicates that North American Early Cretaceous basal iguanodonts are more basal than their contemporaries in Europe and Asia

    A New Troodontid Theropod Dinosaur from the Lower Cretaceous of Utah

    Get PDF
    BACKGROUND: The theropod dinosaur family Troodontidae is known from the Upper Jurassic, Lower Cretaceous, and Upper Cretaceous of Asia and from the Upper Jurassic and Upper Cretaceous of North America. Before now no undisputed troodontids from North America have been reported from the Early Cretaceous. METHODOLOGY/PRINCIPAL FINDINGS: Herein we describe a theropod maxilla from the Lower Cretaceous Cedar Mountain Formation of Utah and perform a phylogenetic analysis to determine its phylogenetic position. The specimen is distinctive enough to assign to a new genus and species, Geminiraptor suarezarum. Phylogenetic analysis places G. suarezarum within Troodontidae in an unresolved polytomy with Mei, Byronosaurus, Sinornithoides, Sinusonasus, and Troodon+(Saurornithoides+Zanabazar). Geminiraptor suarezarum uniquely exhibits extreme pneumatic inflation of the maxilla internal to the antorbital fossa such that the anterior maxilla has a triangular cross-section. Unlike troodontids more closely related to Troodon, G. suarezarum exhibits bony septa between the dental alveoli and a promaxillary foramen that is visible in lateral view. CONCLUSIONS/SIGNIFICANCE: This is the first report of a North American troodontid from the Lower Cretaceous. It therefore contributes to a fuller understanding of troodontid biogeography through time. It also adds to the known dinosaurian fauna of the Cedar Mountain Formation

    Bird-Like Anatomy, Posture, and Behavior Revealed by an Early Jurassic Theropod Dinosaur Resting Trace

    Get PDF
    BACKGROUND: Fossil tracks made by non-avian theropod dinosaurs commonly reflect the habitual bipedal stance retained in living birds. Only rarely-captured behaviors, such as crouching, might create impressions made by the hands. Such tracks provide valuable information concerning the often poorly understood functional morphology of the early theropod forelimb. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a well-preserved theropod trackway in a Lower Jurassic ( approximately 198 million-year-old) lacustrine beach sandstone in the Whitmore Point Member of the Moenave Formation in southwestern Utah. The trackway consists of prints of typical morphology, intermittent tail drags and, unusually, traces made by the animal resting on the substrate in a posture very similar to modern birds. The resting trace includes symmetrical pes impressions and well-defined impressions made by both hands, the tail, and the ischial callosity. CONCLUSIONS/SIGNIFICANCE: The manus impressions corroborate that early theropods, like later birds, held their palms facing medially, in contrast to manus prints previously attributed to theropods that have forward-pointing digits. Both the symmetrical resting posture and the medially-facing palms therefore evolved by the Early Jurassic, much earlier in the theropod lineage than previously recognized, and may characterize all theropods

    A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells

    Get PDF
    Human exposure to carcinogens occurs via a plethora of environmental sources, with 70–90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens’ adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention
    • …
    corecore