258 research outputs found

    Autonomous aircraft flight control for constrained environments

    Get PDF
    The real-time indoor autonomous vehicle test environment (RAVEN) at MIT's Aerospace Controls Laboratory is home to a diverse fleet of aircraft, from a styrofoam and cellophane dragonfly to a set of quadrotor Draganflyer helicopters. The helicopters are used primarily for swarm and health management research. Alongside these machines is a set of more conventional aircraft designed to study autonomous aircraft flight control in constrained environments. The objectives of this work are to develop and validate flight control concepts for aggressive (aerobatic) maneuvers, and, in particular, to identify the sensor suites needed, and the likely limits of achievable performance. Our work is motivated by the future goals of flying micro (or nano) air vehicles in constrained (e.g., urban or indoors) environments

    Air-Combat Strategy Using Approximate Dynamic Programming

    Get PDF
    Unmanned Aircraft Systems (UAS) have the potential to perform many of the dangerous missions currently own by manned aircraft. Yet, the complexity of some tasks, such as air combat, have precluded UAS from successfully carrying out these missions autonomously. This paper presents a formulation of a level flight, fixed velocity, one-on-one air combat maneuvering problem and an approximate dynamic programming (ADP) approach for computing an efficient approximation of the optimal policy. In the version of the problem formulation considered, the aircraft learning the optimal policy is given a slight performance advantage. This ADP approach provides a fast response to a rapidly changing tactical situation, long planning horizons, and good performance without explicit coding of air combat tactics. The method's success is due to extensive feature development, reward shaping and trajectory sampling. An accompanying fast and e ffective rollout-based policy extraction method is used to accomplish on-line implementation. Simulation results are provided that demonstrate the robustness of the method against an opponent beginning from both off ensive and defensive situations. Flight results are also presented using micro-UAS own at MIT's Real-time indoor Autonomous Vehicle test ENvironment (RAVEN).Defense University Research Instrumentation Program (U.S.) (grant number FA9550-07-1-0321)United States. Air Force Office of Scientific Research (AFOSR # FA9550-08-1-0086)American Society for Engineering Education (National Defense Science and Engineering Graduate Fellowship

    A novel piggybac transposon inducible expression system identifies a role for akt signalling in primordial germ cell migration

    Get PDF
    In this work, we describe a single piggyBac transposon system containing both a tet-activator and a doxycycline-inducible expression cassette. We demonstrate that a gene product can be conditionally expressed from the integrated transposon and a second gene can be simultaneously targeted by a short hairpin RNA contained within the transposon, both in vivo and in mammalian and avian cell lines. We applied this system to stably modify chicken primordial germ cell (PGC) lines in vitro and induce a reporter gene at specific developmental stages after injection of the transposon-modified germ cells into chicken embryos. We used this vector to express a constitutively-active AKT molecule during PGC migration to the forming gonad. We found that PGC migration was retarded and cells could not colonise the forming gonad. Correct levels of AKT activation are thus essential for germ cell migration during early embryonic development

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    New Caledonian crows rapidly solve a collaborative problem without cooperative cognition

    Get PDF
    There is growing comparative evidence that the cognitive bases of cooperation are not unique to humans. However, the selective pressures that lead to the evolution of these mechanisms remain unclear. Here we show that while tool-making New Caledonian crows can produce collaborative behavior, they do not understand the causality of cooperation nor show sensitivity to inequity. Instead, the collaborative behavior produced appears to have been underpinned by the transfer of prior experience. These results suggest that a number of possible selective pressures, including tool manufacture and mobbing behaviours, have not led to the evolution of cooperative cognition in this species. They show that causal cognition can evolve in a domain specific manner-understanding the properties and flexible uses of physical tools does not necessarily enable animals to grasp that a conspecific can be used as a social tool

    In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity

    Get PDF
    Cells of the spinal cord and somites arise from shared, dual-fated precursors, located towards the posterior of the elongating embryo. Here we show that these neuromesodermal progenitors (NMPs) can readily be generated in vitro from mouse and human pluripotent stem cells by activating Wnt and Fgf signalling, timed to emulate in vivo development. Similar to NMPs in vivo, these cells co-express the neural factor Sox2 and the mesodermal factor Brachyury and differentiate into neural and paraxial mesoderm in vitro and in vivo. The neural cells produced by NMPs have spinal cord but not anterior neural identity and can differentiate into spinal cord motor neurons. This is consistent with the shared origin of spinal cord and somites and the distinct ontogeny of the anterior and posterior nervous system. Systematic analysis of the transcriptome during differentiation identifies the molecular correlates of each of the cell identities and the routes by which they are obtained. Moreover, we take advantage of the system to provide evidence that Brachyury represses neural differentiation and that signals from mesoderm are not necessary to induce the posterior identity of spinal cord cells. This indicates that the mesoderm inducing and posteriorising functions of Wnt signalling represent two molecularly separate activities. Together the data illustrate how reverse engineering normal developmental mechanisms allows the differentiation of specific cell types in vitro and the analysis of previous difficult to access aspects of embryo development

    Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism

    Get PDF
    SummaryWe have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6–12.0, p = 2.4 × 10-7). We estimate there are 130–234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1

    A Multi-cell, Multi-scale Model of Vertebrate Segmentation and Somite Formation

    Get PDF
    Somitogenesis, the formation of the body's primary segmental structure common to all vertebrate development, requires coordination between biological mechanisms at several scales. Explaining how these mechanisms interact across scales and how events are coordinated in space and time is necessary for a complete understanding of somitogenesis and its evolutionary flexibility. So far, mechanisms of somitogenesis have been studied independently. To test the consistency, integrability and combined explanatory power of current prevailing hypotheses, we built an integrated clock-and-wavefront model including submodels of the intracellular segmentation clock, intercellular segmentation-clock coupling via Delta/Notch signaling, an FGF8 determination front, delayed differentiation, clock-wavefront readout, and differential-cell-cell-adhesion-driven cell sorting. We identify inconsistencies between existing submodels and gaps in the current understanding of somitogenesis mechanisms, and propose novel submodels and extensions of existing submodels where necessary. For reasonable initial conditions, 2D simulations of our model robustly generate spatially and temporally regular somites, realistic dynamic morphologies and spontaneous emergence of anterior-traveling stripes of Lfng. We show that these traveling stripes are pseudo-waves rather than true propagating waves. Our model is flexible enough to generate interspecies-like variation in somite size in response to changes in the PSM growth rate and segmentation-clock period, and in the number and width of Lfng stripes in response to changes in the PSM growth rate, segmentation-clock period and PSM length

    Neutrinos

    Get PDF
    229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure
    corecore