262 research outputs found

    Modulation of the immunogenicity of the Trypanosoma congolense cysteine protease, congopain, through complexation with α2-macroglobulin

    Get PDF
    The protozoan parasite Trypanosoma congolense is the main causative agent of livestock trypanosomosis. Congopain, the major lysosomal cysteine proteinase of T. congolense, contributes to disease pathogenesis, and antibody-mediated inhibition of this enzyme may contribute to mechanisms of trypanotolerance. The potential of different adjuvants to facilitate the production of antibodies that would inhibit congopain activity was evaluated in the present study. Rabbits were immunised with the recombinant catalytic domain of congopain (C2), either without adjuvant, with Freund’s adjuvant or complexed with bovine or rabbit α2-macroglobulin (α2M). The antibodies were assessed for inhibition of congopain activity. Rabbits immunised with C2 alone produced barely detectable anti-C2 antibody levels and these antibodies had no effect on recombinant C2 or native congopain activity. Rabbits immunised with C2 and Freund’s adjuvant produced the highest levels of anti-C2 antibodies. These antibodies either inhibited C2 and native congopain activity to a small degree, or enhanced their activity, depending on time of production after initial immunisation. Rabbits receiving C2-α2M complexes produced moderate levels of anti-C2 antibodies and these antibodies consistently showed the best inhibition of C2 and native congopain activity of all the antibodies, with maximum inhibition of 65%. Results of this study suggest that antibodies inhibiting congopain activity could be raised in livestock with a congopain catalytic domain-α2M complex. This approach improves the effectiveness of the antigen as an anti-disease vaccine candidate for African trypanosomosis

    Ongoing Exercise Intolerance Following COVID‐19: A Magnetic Resonance–Augmented Cardiopulmonary Exercise Test Study

    Get PDF
    Background: Ongoing exercise intolerance of unclear cause following COVID‐19 infection is well recognized but poorly understood. We investigated exercise capacity in patients previously hospitalized with COVID‐19 with and without self‐reported exercise intolerance using magnetic resonance–augmented cardiopulmonary exercise testing. / Methods and Results: Sixty subjects were enrolled in this single‐center prospective observational case‐control study, split into 3 equally sized groups: 2 groups of age‐, sex‐, and comorbidity‐matched previously hospitalized patients following COVID‐19 without clearly identifiable postviral complications and with either self‐reported reduced (COVIDreduced) or fully recovered (COVIDnormal) exercise capacity; a group of age‐ and sex‐matched healthy controls. The COVIDreducedgroup had the lowest peak workload (79W [Interquartile range (IQR), 65–100] versus controls 104W [IQR, 86–148]; P=0.01) and shortest exercise duration (13.3±2.8 minutes versus controls 16.6±3.5 minutes; P=0.008), with no differences in these parameters between COVIDnormal patients and controls. The COVIDreduced group had: (1) the lowest peak indexed oxygen uptake (14.9 mL/minper kg [IQR, 13.1–16.2]) versus controls (22.3 mL/min per kg [IQR, 16.9–27.6]; P=0.003) and COVIDnormal patients (19.1 mL/min per kg [IQR, 15.4–23.7]; P=0.04); (2) the lowest peak indexed cardiac output (4.7±1.2 L/min per m2) versus controls (6.0±1.2 L/min per m2; P=0.004) and COVIDnormal patients (5.7±1.5 L/min per m2; P=0.02), associated with lower indexed stroke volume (SVi:COVIDreduced 39±10 mL/min per m2 versus COVIDnormal 43±7 mL/min per m2 versus controls 48±10 mL/min per m2; P=0.02). There were no differences in peak tissue oxygen extraction or biventricular ejection fractions between groups. There were no associations between COVID‐19 illness severity and peak magnetic resonance–augmented cardiopulmonary exercise testing metrics. Peak indexed oxygen uptake, indexed cardiac output, and indexed stroke volume all correlated with duration from discharge to magnetic resonance–augmented cardiopulmonary exercise testing (P<0.05). / Conclusions: Magnetic resonance–augmented cardiopulmonary exercise testing suggests failure to augment stroke volume as a potential mechanism of exercise intolerance in previously hospitalized patients with COVID‐19. This is unrelated to disease severity and, reassuringly, improves with time from acute illness

    Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital

    Get PDF
    Acetaminophen overdose is a common reason for hospital admission and the most frequent cause of hepatotoxicity in the Western world. Early identification would facilitate patient-individualized treatment strategies. We investigated the potential of a panel of novel biomarkers (with enhanced liver expression or linked to the mechanisms of toxicity) to identify patients with acetaminophen-induced acute liver injury (ALI) at first presentation to the hospital when currently used markers are within the normal range. In the first hospital presentation plasma sample from patients (n = 129), we measured microRNA-122 (miR-122; high liver specificity), high mobility group box-1 (HMGB1; marker of necrosis), full-length and caspase-cleaved keratin-18 (K18; markers of necrosis and apoptosis), and glutamate dehydrogenase (GLDH; marker of mitochondrial dysfunction). Receiver operator characteristic curve analysis and positive/negative predictive values were used to compare sensitivity to report liver injury versus alanine transaminase (ALT) and International Normalized Ratio (INR). In all patients, biomarkers at first presentation significantly correlated with peak ALT or INR. In patients presenting with normal ALT or INR, miR-122, HMGB1, and necrosis K18 identified the development of liver injury (n = 15) or not (n = 84) with a high degree of accuracy and significantly outperformed ALT, INR, and plasma acetaminophen concentration for the prediction of subsequent ALI (n = 11) compared with no ALI (n = 52) in patients presenting within 8 hours of overdose. Conclusion: Elevations in plasma miR-122, HMGB1, and necrosis K18 identified subsequent ALI development in patients on admission to the hospital, soon after acetaminophen overdose, and in patients with ALTs in the normal range. The application of such a biomarker panel could improve the speed of clinical decision-making, both in the treatment of ALI and the design/execution of patient-individualized treatment strategies

    Assessing the Safety of Stem Cell Therapeutics

    Get PDF
    Unprecedented developments in stem cell research herald a new era of hope and expectation for novel therapies. However, they also present a major challenge for regulators since safety assessment criteria, designed for conventional agents, are largely inappropriate for cell-based therapies. This article aims to set out the safety issues pertaining to novel stem cell-derived treatments, to identify knowledge gaps that require further research, and to suggest a roadmap for developing safety assessment criteria. It is essential that regulators, pharmaceutical providers, and safety scientists work together to frame new safety guidelines, based on “acceptable risk,” so that patients are adequately protected but the safety “bar” is not set so high that exciting new treatments are lost

    The impact of outpatient <i>versus</i> inpatient management on health-related quality of life outcomes for patients with malignant pleural effusion: the OPTIMUM randomised clinical trial

    Get PDF
    Background: The principal aim of malignant pleural effusion (MPE) management is to improve health-related quality of life (HRQoL) and symptoms.Methods: In this open-label randomised controlled trial, patients with symptomatic MPE were randomly assigned to either indwelling pleural catheter (IPC) insertion with the option of talc pleurodesis or chest drain and talc pleurodesis. The primary end-point was global health status, measured with the 30-item European Organisation for Research and Treatment of Cancer Quality of Life Core Questionnaire (EORTC QLQ-C30) at 30 days post-intervention. 142 participants were enrolled from July 2015 to December 2019.Results: Of participants randomly assigned to the IPC (n=70) and chest drain (n=72) groups, primary outcome data were available in 58 and 56 patients, respectively. Global health status improved in both groups at day 30 compared with baseline: IPC (mean difference 13.11; p=0.001) and chest drain (mean difference 10.11; p=0.001). However, there was no significant between-group difference at day 30 (mean intergroup difference in baseline-adjusted global health status 2.06, 95% CI −5.86–9.99; p=0.61), day 60 or day 90. No significant differences were identified between groups in breathlessness and chest pain scores. All chest drain arm patients were admitted (median length of stay 4 days); seven patients in the IPC arm required intervention-related hospitalisation.Conclusions: While HRQoL significantly improved in both groups, there were no differences in patient-reported global health status at 30 days. The outpatient pathway using an IPC was not superior to inpatient treatment with a chest drain

    Systems Analysis of miRNA Biomarkers to Inform Drug Safety

    Get PDF
    microRNAs (miRNAs or miRs) are short non-coding RNA molecules which have been shown to be dysregulated and released into the extracellular milieu as a result of many drug and non-drug-induced pathologies in different organ systems. Consequently, circulating miRs have been proposed as useful biomarkers of many disease states, including drug-induced tissue injury. miRs have shown potential to support or even replace the existing traditional biomarkers of drug-induced toxicity in terms of sensitivity and specificity, and there is some evidence for their improved diagnostic and prognostic value. However, several pre-analytical and analytical challenges, mainly associated with assay standardization, require solutions before circulating miRs can be successfully translated into the clinic. This review will consider the value and potential for the use of circulating miRs in drug-safety assessment and describe a systems approach to the analysis of the miRNAome in the discovery setting, as well as highlighting standardization issues that at this stage prevent their clinical use as biomarkers. Highlighting these challenges will hopefully drive future research into finding appropriate solutions, and eventually circulating miRs may be translated to the clinic where their undoubted biomarker potential can be used to benefit patients in rapid, easy to use, point-of-care test systems

    Cross-sectional study evaluating the impact of SARS-CoV-2 variants on Long COVID outcomes in UK hospital survivors

    Get PDF
    OBJECTIVES: COVID-19 studies report on hospital admission outcomes across SARS-CoV-2 waves of infection but knowledge of the impact of SARS-CoV-2 variants on the development of Long COVID in hospital survivors is limited. We sought to investigate Long COVID outcomes, aiming to compare outcomes in adult hospitalised survivors with known variants of concern during our first and second UK COVID-19 waves, prior to widespread vaccination. DESIGN: Prospective observational cross-sectional study. SETTING: Secondary care tertiary hospital in the UK. PARTICIPANTS: This study investigated Long COVID in 673 adults with laboratory-positive SARS-CoV-2 infection or clinically suspected COVID-19, 6 weeks after hospital discharge. We compared adults with wave 1 (wildtype variant, admitted from February to April 2020) and wave 2 patients (confirmed Alpha variant on viral sequencing (B.1.1.7), admitted from December 2020 to February 2021). OUTCOME MEASURES: Associations of Long COVID presence (one or more of 14 symptoms) and total number of Long COVID symptoms with SARS-CoV-2 variant were analysed using multiple logistic and Poisson regression, respectively. RESULTS: 322/400 (wave 1) and 248/273 (wave 2) patients completed follow-up. Predictors of increased total number of Long COVID symptoms included: pre-existing lung disease (adjusted count ratio (aCR)=1.26, 95% CI 1.07, 1.48) and more COVID-19 admission symptoms (aCR=1.07, 95% CI 1.02, 1.12). Weaker associations included increased length of inpatient stay (aCR=1.02, 95% CI 1.00, 1.03) and later review after discharge (aCR=1.00, 95% CI 1.00, 1.01). SARS-CoV-2 variant was not associated with Long COVID presence (OR=0.99, 95% CI 0.24, 4.20) or total number of symptoms (aCR=1.09, 95% CI 0.82, 1.44). CONCLUSIONS: Patients with chronic lung disease or greater COVID-19 admission symptoms have higher Long COVID risk. SARS-CoV-2 variant was not predictive of Long COVID though in wave 2 we identified fewer admission symptoms, improved clinical trajectory and outcomes. Addressing modifiable factors such as length of stay and timepoint of clinical review following discharge may enable clinicians to move from Long COVID risk stratification towards improving its outcome

    Innovative organotypic in vitro models for safety assessment: aligning with regulatory requirements and understanding models of the heart, skin, and liver as paradigms

    Get PDF
    The development of improved, innovative models for the detection of toxicity of drugs, chemicals, or chemicals in cosmetics is crucial to efficiently bring new products safely to market in a cost-effective and timely manner. In addition, improvement in models to detect toxicity may reduce the incidence of unexpected post-marketing toxicity and reduce or eliminate the need for animal testing. The safety of novel products of the pharmaceutical, chemical, or cosmetics industry must be assured; therefore, toxicological properties need to be assessed. Accepted methods for gathering the information required by law for approval of substances are often animal methods. To reduce, refine, and replace animal testing, innovative organotypic in vitro models have emerged. Such models appear at different levels of complexity ranging from simpler, self-organized three-dimensional (3D) cell cultures up to more advanced scaffold-based co-cultures consisting of multiple cell types. This review provides an overview of recent developments in the field of toxicity testing with in vitro models for three major organ types: heart, skin, and liver. This review also examines regulatory aspects of such models in Europe and the UK, and summarizes best practices to facilitate the acceptance and appropriate use of advanced in vitro models

    Identification of Five Developmental Processes during Chondrogenic Differentiation of Embryonic Stem Cells

    Get PDF
    Chondrogenesis is the complex process that leads to the establishment of cartilage and bone formation. Due to their ability to differentiate in vitro and mimic development, embryonic stem cells (ESCs) show great potential for investigating developmental processes. In this study, we used chondrogenic differentiation of ESCs as a model to analyze morphogenetic events during chondrogenesis.ESCs were differentiated into the chondrocyte lineage, forming small cartilaginous aggregates in suspension. Differentiated ESCs showed that chondrogenesis was typically characterized by five overlapping stages. During the first stage, cell condensation and aggregate formation was observed. The second stage was characterized by differentiation into chondrocytes and fibril scaffold formation within spherical aggregates. Deposition of cartilaginous extracellular matrix and cartilage formation were hallmarks of the third stage. Apoptosis of chondrocytes, hypertrophy and/or degradation of cartilage occurred during the fourth stage. Finally, during the fifth stage, bone replacement with membranous calcified tissues took place.We demonstrate that ESCs show the chondrogenic differentiation pathway from the pluripotent stem cell to terminal skeletogenesis through these five stages in vitro. During each stage, morphological changes acquired in preceding stages played an important role in further development as a scaffold or template in subsequent stages. The study of chondrogenesis via ESC differentiation may be informative to our further understanding of skeletal growth and regeneration

    Characterisation of the NRF2 transcriptional network and its response to chemical insult in primary human hepatocytes: implications for prediction of drug-induced liver injury

    Get PDF
    The transcription factor NRF2, governed by its repressor KEAP1, protects cells against oxidative stress. There is interest in modelling the NRF2 response to improve the prediction of clinical toxicities such as drug-induced liver injury (DILI). However, very little is known about the makeup of the NRF2 transcriptional network and its response to chemical perturbation in primary human hepatocytes (PHH), which are often used as a translational model for investigating DILI. Here, microarray analysis identified 108 transcripts (including several putative novel NRF2-regulated genes) that were both downregulated by siRNA targeting NRF2 and upregulated by siRNA targeting KEAP1 in PHH. Applying weighted gene co-expression network analysis (WGCNA) to transcriptomic data from the Open TG-GATES toxicogenomics repository (representing PHH exposed to 158 compounds) revealed four co-expressed gene sets or ‘modules’ enriched for these and other NRF2-associated genes. By classifying the 158 TG-GATES compounds based on published evidence, and employing the four modules as network perturbation metrics, we found that the activation of NRF2 is a very good indicator of the intrinsic biochemical reactivity of a compound (i.e. its propensity to cause direct chemical stress), with relatively high sensitivity, specificity, accuracy and positive/negative predictive values. We also found that NRF2 activation has lower sensitivity for the prediction of clinical DILI risk, although relatively high specificity and positive predictive values indicate that false positive detection rates are likely to be low in this setting. Underpinned by our comprehensive analysis, activation of the NRF2 network is one of several mechanism-based components that can be incorporated into holistic systems toxicology models to improve mechanistic understanding and preclinical prediction of DILI in man
    • 

    corecore