7,449 research outputs found

    Effect of ambient temperature during acute aerobic exercise on short-term appetite, energy intake, and plasma acylated ghrelin in recreationally active males

    Get PDF
    Ambient temperature during exercise may affect energy intake regulation. Compared with a temperate (20 °C) environment, 1 h of running followed by 6 h of rest tended to decrease energy intake from 2 ad libitum meals in a hot (30 °C) environment but increase energy intake in a cool (10 °C) environment (p = 0.08). Core temperature changes did not appear to mediate this trend; whether acylated ghrelin is involved is unclear. Further research is warranted to clarify these findings

    Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease

    Get PDF
    Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits in response to environmental stress. Increasingly, it is appreciated that low complexity domains similar in amino acid composition to yeast PrDs (prion-like domains; PrLDs) found in metazoa have a prominent role in subcellular cytoplasmic organization, especially in relation to RNA homeostasis. In this review, we highlight recent advances in our understanding of the role of prions in enabling rapid adaptation to environmental stress in yeast. We also present the complete list of human proteins with PrLDs and discuss the prevalence of the PrLD in nucleic-acid binding proteins that are often connected to neurodegenerative disease, including: ataxin 1, ataxin 2, FUS, TDP-43, TAF15, EWSR1, hnRNPA1, and hnRNPA2. Recent paradigm-shifting advances establish that PrLDs undergo phase transitions to liquid states, which contribute to the structure and biophysics of diverse membraneless organelles. This structural functionality of PrLDs, however, simultaneously increases their propensity for deleterious protein-misfolding events that drive neurodegenerative disease. We suggest that even these PrLD-misfolding events are not irreversible and can be mitigated by natural or engineered protein disaggregases, which could have important therapeutic applications. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease

    The dynamism of salt crust patterns on playas

    No full text
    Playas are common in arid environments and can be major sources of mineral dust that can influence global climate. These landforms typically form crusts that limit evaporation and dust emission, modify surface erosivity and erodibility, and can lead to over prediction or under prediction of (1) dust-emission potential and (2) water and heat fluxes in energy balance modeling. Through terrestrial laser scanning measurements of part of the Makgadikgadi Pans of Botswana (a Southern Hemisphere playa that emits significant amounts of dust), we show that over weeks, months, and a year, the shapes of these surfaces change considerably (ridge thrusting of >30 mm/week) and can switch among continuous, ridged, and degraded patterns. Ridged pattern development changes the measured aerodynamic roughness of the surface (as much as 3 mm/week). The dynamic nature of these crusted surfaces must be accounted for in dust entrainment and moisture balance formulae to improve regional and global climate models

    Stress granules as crucibles of ALS pathogenesis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal human neurodegenerative disease affecting primarily motor neurons. Two RNA-binding proteins, TDP-43 and FUS, aggregate in the degenerating motor neurons of ALS patients, and mutations in the genes encoding these proteins cause some forms of ALS. TDP-43 and FUS and several related RNA-binding proteins harbor aggregation-promoting prion-like domains that allow them to rapidly self-associate. This property is critical for the formation and dynamics of cellular ribonucleoprotein granules, the crucibles of RNA metabolism and homeostasis. Recent work connecting TDP-43 and FUS to stress granules has suggested how this cellular pathway, which involves protein aggregation as part of its normal function, might be coopted during disease pathogenesis

    Models of endometriosis and their utility in studying progression to ovarian clear cell carcinoma.

    Get PDF
    Endometriosis is a common benign gynaecological condition affecting at least 10% of women of childbearing age and is characterized by pain--frequently debilitating. Although the exact prevalence is unknown, the economic burden is substantial (∼$50 billion a year in the USA alone) and it is associated with considerable morbidity. The development of endometriosis is inextricably linked to the process of menstruation and thus the models that best recapitulate the human disease are in menstruating non-human primates. However, the use of these animals is ethically challenging and very expensive. A variety of models in laboratory animals have been developed and the most recent are based on generating menstrual-like endometrial tissue that can be transferred to a recipient animal. These models are genetically manipulable and facilitate precise mechanistic studies. In addition, these models can be used to study malignant transformation in epithelial ovarian carcinoma. Epidemiological and molecular evidence indicates that endometriosis is the most plausible precursor of both clear cell and endometrioid ovarian cancer (OCCA and OEA, respectively). While this progression is rare, understanding the underlying mechanisms of transformation may offer new strategies for prevention and therapy. Our ability to pursue this is highly dependent on improved animal models but the current transgenic models, which genetically modify the ovarian surface epithelium and oviduct, are poor models of ectopic endometrial tissue. In this review we describe the various models of endometriosis and discuss how they may be applicable to developing our mechanistic understanding of OCCA and OEA.CMK was funded by a grant from CRUK (A13095). Part of the research work disclosed in this publication is funded by the Strategic Educational Pathways Scholarship (Malta) to CB. The scholarship is part-financed by the European Union-European Social Fund (ESF) under Operational Programme II-Cohesion Policy 2007-2013, "Empowering People for More Jobs and a Better Quality of Life”. JDB is supported by CRUK (A15601).This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/path.465

    BRDF of Salt Pan Regolith Samples

    Get PDF
    Laboratory Bi-directional Reflectance Distribution Function (BRDF) measurements of salt pan regolith samples are presented in this study in an effort to understand the role of spatial and spectral variability of the natural biome. The samples were obtained from Etosha Pan, Namibia (19.20 deg S, 15.93 deg E, alt. 1100 m). It is shown how the BRDF depends on the measurement geometry - incident and scatter angles and on the sample particle sizes. As a demonstration of the application of the results, airborne BRDF measurements acquires with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the regolith samples were collected are compared with the laboratory results. Good agreement between laboratory measured and field measured BRDF is reported

    Testing metallicity indicators at z~1.4 with the gravitationally lensed galaxy CASSOWARY 20

    Get PDF
    We present X-shooter observations of CASSOWARY 20 (CSWA 20), a star-forming (SFR ~6 Msol/yr) galaxy at z=1.433, magnified by a factor of 11.5 by the gravitational lensing produced by a massive foreground galaxy at z=0.741. We analysed the integrated physical properties of the HII regions of CSWA 20 using temperature- and density-sensitive emission lines. We find the abundance of oxygen to be ~1/7 of solar, while carbon is ~50 times less abundant than in the Sun. The unusually low C/O ratio may be an indication of a particularly rapid timescale of chemical enrichment. The wide wavelength coverage of X-shooter gives us access to five different methods for determining the metallicity of CSWA 20, three based on emission lines from HII regions and two on absorption features formed in the atmospheres of massive stars. All five estimates are in agreement, within the factor of ~2 uncertainty of each method. The interstellar medium of CSWA 20 only partially covers the star-forming region as viewed from our direction; in particular, absorption lines from neutrals and first ions are exceptionally weak. We find evidence for large-scale outflows of the interstellar medium (ISM) with speeds of up 750 km/s, similar to the values measured in other high-z galaxies sustaining much higher rates of star formation.Comment: 18 pages, 11 figures, accepted for publication in MNRA

    Autonomous system identification and control of MACE II using the Frequency Domain Expert algorithm

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77122/1/AIAA-1999-4586-175.pd

    Low-complexity CNNs for Acoustic Scene Classification

    Full text link
    This technical report describes the SurreyAudioTeam22s submission for DCASE 2022 ASC Task 1, Low-Complexity Acoustic Scene Classification (ASC). The task has two rules, (a) the ASC framework should have maximum 128K parameters, and (b) there should be a maximum of 30 millions multiply-accumulate operations (MACs) per inference. In this report, we present low-complexity systems for ASC that follow the rules intended for the task.Comment: Technical Report DCASE 2022 TASK 1. arXiv admin note: substantial text overlap with arXiv:2207.1152
    corecore