1,626 research outputs found
A Note on the Reliability Tests of Estimates from ARMS Data
USDA uses the concept of "publish-ability" rather than statistical reliability of an estimate for quality validation of USDA estimates, which is solely based on the sample size and the coefficient of variation (CV). We demonstrate conceptually how the reliability of the sample mean can be tested by estimating the upper and lower bounds of the confidence interval for an unknown population mean using the CV. However, the reliability test for the sample mean can be made only under the normality assumption. USDA multiple-way Agricultural Resource Management Survey (ARMS) estimates are used to illustrate the relative measure of precision for sample-based estimators.Research Methods/ Statistical Methods,
Light and Life: Exotic Photosynthesis in Binary Star Systems
The potential for hosting photosynthetic life on Earth-like planets within
binary/multiple stellar systems was evaluated by modelling the levels of
photosynthetically active radiation (PAR) such planets receive. Combinations of
M and G stars in: (i) close-binary systems; (ii) wide-binary systems and (iii)
three-star systems were investigated and a range of stable radiation
environments found to be possible. These environmental conditions allow for the
possibility of familiar, but also more exotic forms of photosynthetic life,
such as infrared photosynthesisers and organisms specialised for specific
spectral niches.Comment: Accepted for publication in: Astrobiolog
Confined granular packings: structure, stress, and forces
The structure and stresses of static granular packs in cylindrical containers
are studied using large-scale discrete element molecular dynamics simulations
in three dimensions. We generate packings by both pouring and sedimentation and
examine how the final state depends on the method of construction. The vertical
stress becomes depth-independent for deep piles and we compare these stress
depth-profiles to the classical Janssen theory. The majority of the tangential
forces for particle-wall contacts are found to be close to the Coulomb failure
criterion, in agreement with the theory of Janssen, while particle-particle
contacts in the bulk are far from the Coulomb criterion. In addition, we show
that a linear hydrostatic-like region at the top of the packings unexplained by
the Janssen theory arises because most of the particle-wall tangential forces
in this region are far from the Coulomb yield criterion. The distributions of
particle-particle and particle-wall contact forces exhibit
exponential-like decay at large forces in agreement with previous studies.Comment: 11 pages, 11 figures, submitted to PRE (v2) added new references,
fixed typo
Statistics of the contact network in frictional and frictionless granular packings
Simulated granular packings with different particle friction coefficient mu
are examined. The distribution of the particle-particle and particle-wall
normal and tangential contact forces P(f) are computed and compared with
existing experimental data. Here f equivalent to F/F-bar is the contact force F
normalized by the average value F-bar. P(f) exhibits exponential-like decay at
large forces, a plateau/peak near f = 1, with additional features at forces
smaller than the average that depend on mu. Computations of the force-force
spatial distribution function and the contact point radial distribution
function indicate that correlations between forces are only weakly dependent on
friction and decay rapidly beyond approximately three particle diameters.
Distributions of the particle-particle contact angles show that the contact
network is not isotropic and only weakly dependent on friction. High
force-bearing structures, or force chains, do not play a dominant role in these
three dimensional, unloaded packings.Comment: 11 pages, 13 figures, submitted to PR
Combined effect of coherent Z exchange and the hyperfine interaction in atomic PNC
The nuclear spin-dependent parity nonconserving (PNC) interaction arising
from a combination of the hyperfine interaction and the coherent,
spin-independent, PNC interaction from Z exchange is evaluated using many-body
perturbation theory. For the 6s-7s transition in 133Cs, we obtain a result that
is about 40% smaller than that found previously by Bouchiat and Piketty [Phys.
Lett. B 269, 195 (1991)]. Applying this result to 133Cs, leads to an increase
in the experimental value of nuclear anapole moment and exacerbates differences
between constraints on PNC meson coupling constants obtained from the Cs
anapole moment and those obtained from other nuclear parity violating
experiments. Nuclear spin-dependent PNC dipole matrix elements, including
contributions from the combined weak-hyperfine interaction, are also given for
the 7s-8s transition in 211Fr and for transitions between ground-state
hyperfine levels in K, Rb, Cs, Ba+, Au, Tl, Fr, and Ra+.Comment: Revtex4 preprint 19 pages 4 table
Giant vortex state in perforated aluminum microsquares
We investigate the nucleation of superconductivity in a uniform perpendicular
magnetic field H in aluminum microsquares containing a few (2 and 4) submicron
holes (antidots). The normal/superconducting phase boundary T_c(H) of these
structures shows a quite different behavior in low and high fields. In the low
magnetic field regime fluxoid quantization around each antidot leads to
oscillations in T_c(H), expected from the specific sample geometry, and
reminiscent of the network behavior. In high magnetic fields, the T_c(H)
boundaries of the perforated and a reference non-perforated microsquare reveal
cusps at the same values of Phi/Phi_0 (where Phi is the applied flux threading
the total square area and Phi_0 is the superconducting flux quantum), while the
background on T_c(H) becomes quasi-linear, indicating that a giant vortex state
is established. The influence of the actual geometries on T_c(H) is analyzed in
the framework of the linearized Ginzburg-Landau theory.Comment: 14 pages, 6 PS figures, RevTex, accepted for publication in Phys.
Rev.
Evaluation of the knowledge and application of diagnostic imaging modalities among veterinary surgeons in Nigerian veterinary medical schools
The awareness, theoretical and practical knowledge of radiography, ultrasonography, magnetic resonance imaging (MRI), computed tomography (CT), nuclear medical imaging (NMI) and thermography were accessed among veterinary surgeons teaching in veterinary schools in Nigeria, using a structured questionnaire. Respondents were grouped into five depending on their years of experience post-graduation. These were Group A (0-5 years), Group B (6-10 years), Group C (11-15 years) Group D (16-20 years) and Group E (> 20 years). The result of the awareness of radiography as a diagnostic imaging modality in veterinary practice was not dependent on the years of research experience. A 100 % of respondents in Group A were aware that ultrasonography is indicated in veterinary practice; while only 96.67 % were aware that radiography is so indicated. There was a gradual decline in the awareness of CT compared to radiography and ultrasonography. There was low awareness of the application of MRI, NMI and thermography in veterinary practice by all respondents irrespective of their years of experience. There was a decline in the degree of theoretical knowledge with advancement in the technique. The variation in the mere observation of the practical demonstration of radiography was related to years of research experience, with the exception of Group D. Group E recorded the highest positive response to practical knowledge of all the diagnostic imaging modalities. There was a remarkable drop in the practical knowledge of CT, MRI, NMI and thermography, compared to radiography and ultrasonography in each of the study groups. Only 1 veterinary school had a CT scanning machine, and none had an MRI unit, a gamma camera or a thermographic camera. Only 4 veterinary schools taught MRI. No veterinary school taught NMI and thermography. Appropriate recommendations were made.
Keywords: CT, MRI, NMI, Radiography, Thermography, Ultrasonograph
Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains
In light of new data on neutron distributions from experiments with
antiprotonic atoms [ Trzcinska {\it et al.}, Phys. Rev. Lett. 87, 082501
(2001)], we reexamine the role of nuclear-structure uncertainties in the
interpretation of measurements of parity violation in atoms using chains of
isotopes of the same element. With these new nuclear data, we find an
improvement in the sensitivity of isotopic chain measurements to ``new
physics'' beyond the standard model. We compare possible constraints on ``new
physics'' with the most accurate to date single-isotope probe of parity
violation in the Cs atom. We conclude that presently isotopic chain experiments
employing atoms with nuclear charges Z < 50 may result in more accurate tests
of the weak interaction.Comment: 6 pages, 1 fig., submitted to Phys. Rev.
N-body simulations of gravitational dynamics
We describe the astrophysical and numerical basis of N-body simulations, both
of collisional stellar systems (dense star clusters and galactic centres) and
collisionless stellar dynamics (galaxies and large-scale structure). We explain
and discuss the state-of-the-art algorithms used for these quite different
regimes, attempt to give a fair critique, and point out possible directions of
future improvement and development. We briefly touch upon the history of N-body
simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu
Parity Violating Measurements of Neutron Densities
Parity violating electron nucleus scattering is a clean and powerful tool for
measuring the spatial distributions of neutrons in nuclei with unprecedented
accuracy. Parity violation arises from the interference of electromagnetic and
weak neutral amplitudes, and the of the Standard Model couples primarily
to neutrons at low . The data can be interpreted with as much confidence
as electromagnetic scattering. After briefly reviewing the present theoretical
and experimental knowledge of neutron densities, we discuss possible parity
violation measurements, their theoretical interpretation, and applications. The
experiments are feasible at existing facilities. We show that theoretical
corrections are either small or well understood, which makes the interpretation
clean. The quantitative relationship to atomic parity nonconservation
observables is examined, and we show that the electron scattering asymmetries
can be directly applied to atomic PNC because the observables have
approximately the same dependence on nuclear shape.Comment: 38 pages, 7 ps figures, very minor changes, submitted to Phys. Rev.
- …
