87 research outputs found

    Exploration of the Southern California Borderland

    Get PDF
    E/V Nautilus cruise NA075 returned to the Southern California Continental Borderland, an area that remains largely unexplored. Part of the broader North America-Pacific plate boundary, this region extends ~300 km west of the San Andreas Fault and displays an unusually rugged physiography. During the cruise, the multibeam sonar mapped ~5,200 km2 of seafloor, and ROVs Hercules and Argus were deployed for 16 dives to explore geological and biological targets (Figure 1) and collect samples

    Study protocol: Australasian Registry of Severe Cutaneous Adverse Reactions (AUS-SCAR)

    Get PDF
    Introduction Severe cutaneous adverse reactions (SCAR) are a group of T cell-mediated hypersensitivities associated with significant morbidity, mortality and hospital costs. Clinical phenotypes include Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS) and acute generalised exanthematous pustulosis (AGEP). In this Australasian, multicentre, prospective registry, we plan to examine the clinical presentation, drug causality, genomic predictors, potential diagnostic approaches, treatments and long-term outcomes of SCAR in Australia and New Zealand. Methods and analysis Adult and adolescent patients with SCAR including SJS, TEN, DRESS, AGEP and another T cell-mediated hypersensitivity, generalised bullous fixed drug eruption, will be prospectively recruited. A waiver of consent has been granted for some sites to retrospectively include cases which result in early mortality. DNA will be collected for all prospective cases. Blood, blister fluid and skin biopsy sampling is optional and subject to patient consent and site capacity. To develop culprit drug identification and prevention, genomic testing will be performed to confirm human leukocyte antigen (HLA) type and ex vivo testing will be performed via interferon-γ release enzyme linked immunospot assay using collected peripheral blood mononuclear cells. The long-term outcomes of SCAR will be investigated with a 12-month quality of life survey and examination of prescribing and mortality data. Ethics and dissemination This study was reviewed and approved by the Austin Health Human Research Ethics Committee (HREC/50791/Austin-19). Results will be published in peer-reviewed journals and presented at relevant conferences

    Phospholipase C-ε Regulates Epidermal Morphogenesis in Caenorhabditis elegans

    Get PDF
    Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP3)-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP3 production is stimulated is unknown. IP3 is produced by the action of phospholipase C (PLC). We therefore surveyed the PLC family of C. elegans using RNAi and mutant strains, and found that depletion of PLC-1/PLC-ε produced substantial embryonic lethality. We used the epithelial cell marker ajm-1::gfp to follow the behaviour of epidermal cells and found that 96% of the arrested embryos have morphogenetic defects. These defects include defective ventral enclosure and aberrant dorsal intercalation. Using time-lapse confocal microscopy we show that the migration of the ventral epidermal cells, especially of the leading cells, is slower and often fails in plc-1(tm753) embryos. As a consequence plc-1 loss of function results in ruptured embryos with a Gex phenotype (gut on exterior) and lumpy larvae. Thus PLC-1 is involved in the regulation of morphogenesis. Genetic studies using gain- and loss-of-function alleles of itr-1, the gene encoding the IP3 receptor in C. elegans, demonstrate that PLC-1 acts through ITR-1. Using RNAi and double mutants to deplete the other PLCs in a plc-1 background, we show that PLC-3/PLC-γ and EGL-8/PLC-β can compensate for reduced PLC-1 activity. Our work places PLC-ε into a pathway controlling epidermal cell migration, thus establishing a novel role for PLC-ε

    Dystroglycan versatility in cell adhesion: a tale of multiple motifs

    Get PDF
    Dystroglycan is a ubiquitously expressed heterodimeric adhesion receptor. The extracellular a-subunit makes connections with a number of laminin G domain ligands including laminins, agrin and perlecan in the extracellular matrix and the transmembrane b-subunit makes connections to the actin filament network via cytoskeletal linkers including dystrophin, utrophin, ezrin and plectin, depending on context. Originally discovered as part of the dystrophin glycoprotein complex of skeletal muscle, dystroglycan is an important adhesion molecule and signalling scaffold in a multitude of cell types and tissues and is involved in several diseases. Dystroglycan has emerged as a multifunctional adhesion platform with many interacting partners associating with its short unstructured cytoplasmic domain. Two particular hotspots are the cytoplasmic juxtamembrane region and at the very carboxy terminus of dystroglycan. Regions which between them have several overlapping functions: in the juxtamembrane region; a nuclear localisation signal, ezrin/radixin/moesin protein, rapsyn and ERK MAP Kinase binding function, and at the C terminus a regulatory tyrosine governing WW, SH2 and SH3 domain interactions. We will discuss the binding partners for these motifs and how their interactions and regulation can modulate the involvement of dystroglycan in a range of different adhesion structures and functions depending on context. Thus dystroglycan presents as a multifunctional scaffold involved in adhesion and adhesion-mediated signalling with its functions under exquisite spatiotemporal regulation

    Fatigue in primary Sjögren's syndrome (pSS) is associated with lower levels of proinflammatory cytokines: a validation study

    Get PDF
    Primary Sjögren’s syndrome (pSS) is a chronic autoimmune rheumatic disease with symptoms including dryness, fatigue, and pain. The previous work by our group has suggested that certain proinflammatory cytokines are inversely related to patient-reported levels of fatigue. To date, these findings have not been validated. This study aims to validate this observation. Blood levels of seven cytokines were measured in 120 patients with pSS from the United Kingdom Primary Sjögren’s Syndrome Registry and 30 age-matched healthy non-fatigued controls. Patient-reported scores for fatigue were classified according to severity and compared to cytokine levels using analysis of variance. The differences between cytokines in cases and controls were evaluated using Wilcoxon test. A logistic regression model was used to determine the most important identifiers of fatigue. Five cytokines, interferon-γ-induced protein-10 (IP-10), tumour necrosis factor-α (TNFα), interferon-α (IFNα), interferon-γ (IFN-γ), and lymphotoxin-α (LT-α) were significantly higher in patients with pSS (n = 120) compared to non-fatigued controls (n = 30). Levels of two proinflammatory cytokines, TNF-α (p = 0.021) and LT-α (p = 0.043), were inversely related to patient-reported levels of fatigue. Cytokine levels, disease-specific and clinical parameters as well as pain, anxiety, and depression were used as predictors in our validation model. The model correctly identifies fatigue levels with 85% accuracy. Consistent with the original study, pain, depression, and proinflammatory cytokines appear to be the most powerful predictors of fatigue in pSS. TNF-α and LT-α have an inverse relationship with fatigue severity in pSS challenging the notion that proinflammatory cytokines directly mediate fatigue in chronic immunological conditions

    Validation of a Novel Multivariate Method of Defining HIV-Associated Cognitive Impairment

    Get PDF
    Background. The optimum method of defining cognitive impairment in virally suppressed people living with HIV is unknown. We evaluated the relationships between cognitive impairment, including using a novel multivariate method (NMM), patientreported outcome measures (PROMs), and neuroimaging markers of brain structure across 3 cohorts.Methods. Differences in the prevalence of cognitive impairment, PROMs, and neuroimaging data from the COBRA, CHARTER, and POPPY cohorts (total n = 908) were determined between HIV-positive participants with and without cognitive impairment defined using the HIV-associated neurocognitive disorders (HAND), global deficit score (GDS), and NMM criteria.Results. The prevalence of cognitive impairment varied by up to 27% between methods used to define impairment (eg, 48% for HAND vs 21% for NMM in the CHARTER study). Associations between objective cognitive impairment and subjective cognitive complaints generally were weak. Physical and mental health summary scores (SF-36) were lowest for NMM-defined impairment (P<.05). There were no differences in brain volumes or cortical thickness between participants with and without cognitive impairment defined using the HAND and GDS measures. In contrast, those identified with cognitive impairment by the NMM had reduced mean cortical thickness in both hemispheres (P<.05), as well as smaller brain volumes (P<.01). The associations with measures of white matter microstructure and brain-predicted age generally were weaker.Conclusion. Different methods of defining cognitive impairment identify different people with varying symptomatology and measures of brain injury. Overall, NMM-defined impairment was associated with most neuroimaging abnormalities and poorer selfreported health status. This may be due to the statistical advantage of using a multivariate approach
    corecore