352 research outputs found

    STAT 5 activators can replace the requirement of FBS in the adipogenesis of 3T3-L1 cells

    Get PDF
    The 3T3-L1 cells differentiate into fat cells that have many properties of native adipocytes including: substantial lipid accumulation, insulin sensitivity, and the ability to secrete endocrine hormones. A substantial expense in using these cells is fetal bovine serum (FBS), a critical component of efficient adipogenesis. Our recent studies on STAT 5 proteins have revealed that these transcription factors are phosphorylated and translocate to the nucleus immediately after the initiation of differentiation. Studies by several other laboratories also suggest that STAT 5 proteins can have pro-adipogenic properties. Growth hormone (GH) and prolactin (PRL) are both potent activators of STAT 5A and STAT 5B proteins. Since, FBS has high concentrations of GH; we examined the ability of GH to replace FBS as a component of the differentiation cocktail for 3T3-L1 cells. Our studies revealed that FBS was not required for the adipogenesis of 3T3-L1 cells if GH or PRL was added to the differentiation cocktail. Adipogenesis was judged by Oil Red O staining and expression of adipocyte marker genes. Hence, we have developed a substantially less expensive method for differentiating 3T3-L1 cells without FBS, thiazolidinediones, or expensive cytokines. © 2004 Elsevier Inc. All rights reserved

    Probing Galaxy Formation with TeV Gamma Ray Absorption

    Full text link
    We present here the extragalactic background light (EBL) predicted by semi-analytic models of galaxy formation, and show how measurements of the absorption of gamma rays of ∼\sim TeV energies via pair production on the EBL can probe cosmology and the formation of galaxies. Semi-analytic models permit a physical treatment of the key processes of galaxy formation -- including gravitational collapse and merging of dark matter halos, gas cooling and dissipation, star formation, supernova feedback and metal production -- and have been shown to reproduce key observations at low and high redshift. Using this approach, we investigate the consequences of variations in input assumptions such as the stellar initial mass function and the underlying cosmology. We conclude that observational studies of the absorption of ∼10−2−102\sim 10^{-2}-10^{2} TeV gamma rays will help to constrain the star formation history of the universe, and the nature and extent of the extinction of starlight due to dust and reradiation of the absorbed energy at infrared wavelengths.Comment: 17 pages, 8 figures, presented at the VERITAS Workshop on TeV Astrophysics of Extragalactic Sources, eds. M. Catanese and T. Weekes, to be published in Astroparticle Physic

    The Age of Cluster Galaxies from Continuum Colors

    Get PDF
    We determine the age of 1,104 early-type galaxies in eight rich clusters (z=0.0046z = 0.0046 to 0.1750.175) using a new continuum color technique. We find that galaxies in clusters divide into two populations, an old population with a mean age similar to the age of the Universe (12 Gyrs) and a younger population with a mean age of 9 Gyrs. The older population follows the expected relations for mass and metallicity that imply a classic monolithic collapse origin. Although total galaxy metallicity is correlated with galaxy mass, it is uncorrelated with age. It is impossible, with the current data, to distinguish between a later epoch of star formation, longer duration of star formation or late bursts of star formation to explain the difference between the old and young populations. However, the global properties of this younger population are correlated with cluster environmental factors, which implies secondary processes, post-formation epoch, operate on the internal stellar population of a significant fraction of cluster galaxies. In addition, the mean age of the oldest galaxies in a cluster are correlated with cluster velocity dispersion implying that galaxy formation in massive clusters begins at earlier epochs than less massive clusters.Comment: 35 pages, 10 figures, accepted by Ap

    Simulating chemistry using quantum computers

    Get PDF
    The difficulty of simulating quantum systems, well-known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.Comment: 27 pages. Submitted to Ann. Rev. Phys. Che

    The Age of the Solar Neighbourhood

    Full text link
    High-quality Hipparcos data for a complete sample of nearly 12000 main-sequence and subgiant stars, together with Padua isochrones, are used to constrain the star-formation history of the solar neigbourhood and the processes that stochastically accelerate disk stars. The velocity dispersion of a coeval group of stars is found to increase with time from ~8 kms at birth as t^{0.33}. In the fits, the slope of the IMF near 1 Msun proves to be degenerate with the rate at which the star-formation rate declines. If the slope of the IMF is to lie near Salpeter's value, -2.35, the star-formation rate has to be very nearly constant. The age of the solar neighbourhood is found to be 11.2+/-0.75 Gyr with remarkably little sensitivity to variations in the assumed metallicity distribution of old disk stars. This age is only a Gyr younger than the age of the oldest globular clusters when the same isochrones and distance scale are employed. It is compatible with current indications of the redshift of luminous galaxy formation only if there is a large cosmological constant. A younger age is formally excluded because it provides a poor fit to the number density of red stars. Since this density is subject to a significantly uncertain selection function, ages as low as 9 Gyr are plausible even though they lie outside our formal error bars.Comment: 7 pages; typographical corrections onl
    • …
    corecore