463 research outputs found

    A preliminary checklist of fungi at the Boston Harbor Islands

    Get PDF
    Between December 2012 and May 2017, we conducted a fungal inventory at the Boston Harbor Islands National Recreation Area (BHI) in Massachusetts. We extensively sampled 4 sites (Grape Island, Peddocks Island, Thompson Island, and World's End peninsula) and occasionally visited 4 others for sampling (Calf Island, Great Brewster Island, Slate Island, and Webb Memorial State Park). We made over 900 collections, of which 313 have been identified. The survey yielded 172 species in 123 genera, 62 families, 24 orders, 11 classes, and 2 phyla. We report 4 species as new, but not formally described, in the genera Orbilia, Resupinatus, and Xylaria. Another collection in the genus Lactarius may be new to science, but further morphological and molecular work is needed to confirm this conclusion. Additionally, Orbilia aprilis is a new report for North America, Proliferodiscus earoleucus represents only the second report for the US, and Chrysosporium sulfureum, a common fungus of some cheeses, was discovered on woodlice (Crustacea: Malacostraca: Isopoda: Oniscidea). We discuss our findings in the light of DNA-based identifications using the ITS ribosomal DNA region, including the advantages and disadvantages of this approach, and stress the need for biodiversity studies in urbanized areas during all seasons

    Microbial associations with macrobiota in coastal ecosystems : patterns and implications for nitrogen cycling

    Get PDF
    Author Posting. © Ecological Society of America, 2016. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 14 (2016): 200-208, doi:10.1002/fee.1262.In addition to their important effects on nitrogen (N) cycling via excretion and assimilation (by macrofauna and macroflora, respectively), many macrobiota also host or facilitate microbial taxa responsible for N transformations. Interest in this topic is expanding, especially as it applies to coastal marine systems where N is a limiting nutrient. Our understanding of the diversity of microbes associated with coastal marine macrofauna (invertebrate and vertebrate animals) and macrophytes (seaweeds and marine plants) is improving, and recent studies indicate that the collection of microbes living in direct association with macrobiota (the microbiome) may directly contribute to N cycling. Here, we review the roles that macrobiota play in coastal N cycling, review current knowledge of macrobial–microbial associations in terms of N processing, and suggest implications for coastal ecosystem function as animals are harvested and as foundational habitat is lost or degraded. Given the biodiversity of microbial associates of macrobiota, we advocate for more research into the functional consequences of these associations for the coastal N cycle.University of Chicago-Marine Biological Laboratories (MBL

    Human papillomavirus mediated inhibition of DNA damage sensing and repair drives skin carcinogenesis

    Get PDF
    Background: The failure to mount an effective DNA damage response to repair UV induced cyclobutane pyrimidine dimers (CPDs) results in an increased propensity to develop cutaneous squamous cell carcinoma (cSCC). High-risk patient groups, such as organ transplant recipients (OTRs) frequently exhibit field cancerization at UV exposed body sites from which multiple human papillomavirus (HPV)-associated cSCCs develop rapidly, leading to profound morbidity and increased mortality. In vitro molecular evidence indicates that HPV of genus beta-papillomavirus (β-PV) play an important role in accelerating the early stages of skin tumorigenesis. Methods: We investigated the effects of UV induced DNA damage in murine models of β-PV E6 oncoprotein driven skin tumorigenesis by crossing K14-HPV8-E6wt mice (developing skin tumors after UV treatment) with K14-CPD-photolyase animals and by generating the K14-HPV8-E6-K136N mutant mouse strain. Thymine dimers (marker for CPDs) and γH2AX (a marker for DNA double strand breaks) levels were determined in the murine skin and organotypic skin cultures of E6 expressing primary human keratinocytes after UV-irradiation by immunohistochemistry and in cell lines by In Cell Western blotting. Phosphorylation of ATR/Chk1 and ATM were assessed in cell lines and organotypic skin cultures by Western blots and immunohistochemistry. Results: Skin tumor development after UV-irradiation in K14-HPV8-E6wt mice could completely be blocked through expression of CPD-photolyase. Through quantification of thymine dimers after UV irradiation in cells expressing E6 proteins with point mutations at conserved residues we identified a critical lysine in the

    Neurobehavioral Evaluation of Mice Dosed With Water Hemlock Green Seeds and Tubers

    Get PDF
    Water hemlock are plants of the genus Cicuta and are toxic to animals and humans. The primary toxin is cicutoxin, which is abundant in the tubers, but less abundant in other parts of the plant. Other cicutoxin-like compounds, such as cicutols, which may also contribute to the toxicity of water hemlock, are more abundant in non-tuber plant parts. The objective of this study was to determine the toxicity of different parts of water hemlock and characterize their effects on motor function/coordination in mice. An aqueous extract of green seeds, dry seeds, tubers, flowers and stems of water hemlock was dosed orally to mice to determine their acute toxicity. The results indicated that only the green seeds and tubers were sufficiently toxic to animals to induce seizures and death. The LD50 for tubers and green seeds was 17 mg/kg and 1320 mg/kg, respectively. Several tests were used to evaluate motor function and behavior in treated mice including rotarod, tremor monitor, and open field. The animals were evaluated before dosing and 30, 90, 120, 150, 180, 240, and 300 min after dosing. Water hemlock affected muscle function of mice, including their balance and motility on a rotarod, motor activity, and exploratory and anxiety-related (i.e., thigmotaxis) behaviors in an open field. Seizures interspersed with central nervous system (CNS) motor depression were observed in animals poisoned by water hemlock. Extracts from tubers were especially potent in causing a decrease in motor activity and resultant depression, while periodically provoking seizures. Further research is needed to identify, quantitate, and purify cicutoxin and the other polyacetylene compounds from the various water hemlock plant parts to evaluate their toxicity and effects on motor function

    Allele-Selective Suppression of Mutant Huntingtin in Primary Human Blood Cells

    Get PDF
    Post-transcriptional gene silencing is a promising therapy for the monogenic, autosomal dominant, Huntington\u27s disease (HD). However, wild-type huntingtin (HTT) has important cellular functions, so the ideal strategy would selectively lower mutant HTT while sparing wild-type. HD patients were genotyped for heterozygosity at three SNP sites, before phasing each SNP allele to wild-type or mutant HTT. Primary ex vivo myeloid cells were isolated from heterozygous patients and transfected with SNP-targeted siRNA, using glucan particles taken up by phagocytosis. Highly selective mRNA knockdown was achieved when targeting each allele of rs362331 in exon 50 of the HTT transcript; this selectivity was also present on protein studies. However, similar selectivity was not observed when targeting rs362273 or rs362307. Furthermore, HD myeloid cells are hyper-reactive compared to control. Allele-selective suppression of either wild-type or mutant HTT produced a significant, equivalent reduction in the cytokine response of HD myeloid cells to LPS, suggesting that wild-type HTT has a novel immune function. We demonstrate a sequential therapeutic process comprising genotyping and mutant HTT-linkage of SNPs, followed by personalised allele-selective suppression in a small patient cohort. We further show that allele-selectivity in ex vivo patient cells is highly SNP-dependent, with implications for clinical trial target selection

    An investigation of intensity-modulated radiation therapy versus conventional two-dimensional and 3D-conformal radiation therapy for early stage larynx cancer

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Intensity modulated radiation therapy (IMRT) has been incorporated at several institutions for early stage laryngeal cancer (T1/T2N0M0), but its utility is controversial.</p> <p>Methods</p> <p>In three representative patients, multiple plans were generated: 1) Conventional 2D planning, with the posterior border placed at either the anterior aspect ("tight" plan) or the mid-vertebral body ("loose" plan), 2) 3D planning, utilizing both 1.0 and 0.5 cm margins for the planning target volume (PTV), and 3) IMRT planning, utilizing the same margins as the 3D plans. A dosimetric comparison was performed for the target volume, spinal cord, arytenoids, and carotid arteries. The prescription dose was 6300 cGy (225 cGy fractions), and the 3D and IMRT plans were normalized to this dose.</p> <p>Results</p> <p>For PTV margins of 1.0 cm and 0.5 cm, the D95 of the 2D tight/loose plans were 3781/5437 cGy and 5372/5869 cGy, respectively (IMRT/3D plans both 6300 cGy). With a PTV margin of 1.0 cm, the mean carotid artery dose was 2483/5671/5777/4049 cGy in the 2D tight, 2D loose, 3D, and IMRT plans, respectively. When the PTV was reduced to 0.5 cm, the the mean carotid artery dose was 2483/5671/6466/2577 cGy to the above four plans, respectively. The arytenoid doses were similar between the four plans, and spinal cord doses were well below tolerance.</p> <p>Conclusions</p> <p>IMRT provides a more ideal dose distribution compared to 2D treatment and 3D planning in regards to mean carotid dose. We therefore recommend IMRT in select cases when the treating physician is confident with the GTV.</p

    Purification, crystallization and preliminary X-ray analysis of adenylosuccinate synthetase from the fungal pathogen Cryptococcus neoformans

    Get PDF
    With increasingly large immunocompromised populations around the world, opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality. To combat the paucity of antifungal compounds, new drug targets must be investigated. Adenylosuccinate synthetase is a crucial enzyme in the ATP de novo biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. Although the enzyme is ubiquitous and well characterized in other kingdoms, no crystallographic studies on the fungal protein have been performed. Presented here are the expression, purification, crystallization and initial crystallographic analyses of cryptococcal adenylosuccinate synthetase. The crystals had the symmetry of space group P2(1)2(1)2(1) and diffracted to 2.2 angstrom resolution
    corecore