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Abstract

Background: The failure to mount an effective DNA damage response to repair UV induced cyclobutane pyrimidine
dimers (CPDs) results in an increased propensity to develop cutaneous squamous cell carcinoma (cSCQ). High-risk
patient groups, such as organ transplant recipients (OTRs) frequently exhibit field cancerization at UV exposed body
sites from which multiple human papillomavirus (HPV)-associated cSCCs develop rapidly, leading to profound
morbidity and increased mortality. In vitro molecular evidence indicates that HPV of genus beta-papillomavirus
(B-PV) play an important role in accelerating the early stages of skin tumorigenesis.

Methods: We investigated the effects of UV induced DNA damage in murine models of 3-PV E6 oncoprotein

driven skin tumorigenesis by crossing K14-HPV8-E6wt mice (developing skin tumors after UV treatment) with
K14-CPD-photolyase animals and by generating the K14-HPV8-E6-K136N mutant mouse strain. Thymine dimers
(marker for CPDs) and yH2AX (a marker for DNA double strand breaks) levels were determined in the murine skin and
organotypic skin cultures of E6 expressing primary human keratinocytes after UV-irradiation by immunohistochemistry
and in cell lines by In Cell Western blotting. Phosphorylation of ATR/Chk1 and ATM were assessed in cell lines and
organotypic skin cultures by Western blots and immunohistochemistry.

Results: Skin tumor development after UV-irradiation in K14-HPV8-E6wt mice could completely be blocked through
expression of CPD-photolyase. Through quantification of thymine dimers after UV irradiation in cells expressing E6
proteins with point mutations at conserved residues we identified a critical lysine in the C-terminal part of the protein
for prevention of DNA damage repair and p300 binding. Whereas all K14-HPV8-E6éwt animals develop skin tumors after
UV expression of the HPV8-E6-K136N mutant significantly blocked skin tumor development after UV treatment. The
persistence of CPDs in hyperproliferative epidermis K14-HPV8-Eéwt skin resulted in the accumulation of yH2AX foci.
DNA damage sensing was impaired in E6 positive cells grown as monolayer culture and in organotypic cultures, due
to lack of phosphorylation of ATM, ATR and Chk1.

Conclusion: We showed that cells expressing E6 fail to sense and mount an effective response to repair UV-induced
DNA lesions and demonstrated a physiological relevance of E6-mediated inhibition of DNA damage repair for tumor
initiation. These are the first mechanistical in vivo data on the tumorigenicity of HPV8 and demonstrate that the
impairment of DNA damage repair pathways by the viral E6 protein is a critical factor in HPV-driven skin carcinogenesis.
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Background

Exposure to solar ultraviolet B wavelengths (UVB) is the
principal risk factor for skin cancer development. UVB
damages DNA through the formation of the potentially
mutagenic photoproducts, cyclobutane-pyrimidine-dimers
(CPDs) or 6—4-photoproducts (6-4PPs) [1]. Transcrip-
tome analysis showed that the most prominent pathway
induced by CPDs was associated with DNA double-strand
break (DSB). These results implied that the conversion of
unrepaired CPDs into DSB during DNA replication con-
stitutes the principal source of UV-mediated cytotoxicity
[2] and that CPDs are the principal lesions accounting for
most DNA damage-dependent biological effects [3]. The
importance of DNA repair mechanisms in preventing skin
cancer development is demonstrated clearly in certain hu-
man syndromes such as xeroderma pigmentosum (XP),
characterized as being defective in DNA repair processes
that exacerbate the clinical effects of unrepaired DNA
damage resulting in genetic instability. XP is characterized
by severe UV sensitivity resulting in a 10,000-fold in-
creased risk for skin cancer development on UV-exposed
tissues [4] indicating a clear causative relationship be-
tween unrepaired DNA lesions and cancer. Experiments
using transgenic mice expressing Potorous tridactylus
CPD-photolyase under the control of the keratin-14 pro-
moter (K14-CPD-PL) indicated that fast removal of CPDs
from K14-permissive cells dramatically decreased the inci-
dence of skin cancer in UV-treated animals [5-7].

In addition to UV-radiation, there is an emerging
pathogenic role for human papillomavirus (HPV) of
genus betapapillomavirus (f-PV, e.g. HPV5 and HPVS)
in the initiation phase of cutaneous SCC (cSCC) in iatro-
genically immunosuppressed patients [8—10]. These ag-
gressive tumors appear on sun-exposed areas of skin
that exhibit'field cancerization, with concomitant in-
creased morbidity through development of multiple tu-
mors that develop rapidly.

The carcinogenic capacity of HPV8 could be demon-
strated in transgenic mice, expressing the complete early
gene region (CER) of HPV8 under control of the human
keratin-14 promoter. These K14-HPV8-CER mice spon-
taneously developed papillomas, characterized by varying
degrees of epidermal dysplasia and SCC without any treat-
ment with physical or chemical carcinogens within few
months [11]. Transgenic mice expressing only the HPV8
E6 gene from the K14 promoter (K14-HPV8-E6) also
showed a high penetrance of papillomatosis, followed by
progression to dysplasia and SCC. A single UVA/B irradi-
ation of K14-HPV8-E6 transgenic mice accelerated tumor
development as papillomas arose within three weeks after
treatment [12]. Papilloma development was always pre-
ceded by an increased transgene expression and knock-
down of E6 mRNA by HPV8-E6-specific siRNA in the
context of CER led to a delay and a lower incidence of
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papilloma development. This indicated that E6 is the
major oncogene of HPV8 in the murine epidermis, since
early increase of E6 expression is necessary and sufficient
for induction of papilloma formation [13]. In vitro studies
revealed that inhibition of UV-induced apoptosis [14, 15]
and DNA damage repair after UV-irradiation (reviewed in
[16]) represent two activities of the B-PV E6 protein,
which may result in survival of damaged cells.

At present however, the different contributions of the
inhibition of apoptosis and interference with DNA repair
in HPV E6-driven tumorigenesis are yet to be resolved.
In this study we provide compelling evidence that inter-
ference with the DNA repair pathway is necessary and
obligatory for skin tumor initiation in HPV8 transgenic
mice treated with UV. These findings have important
clinical implications for the development of skin cancer
in humans.

Results and discussion

Enhanced repair of CPDs in K14-HPV8-E6wt mice abro-
gates UV-induced skin tumor formation. To delineate
the physiological relevance of impaired DNA damage re-
pair in skin tumor initiation by HPV8-E6 in vivo, the
CPD-PL was expressed in HPV8-E6 cells by crossing
K14-HPV8-E6wt with K14-CPD-PL animals. The result-
ant mice were irradiated with UV. E6"/PL" and E6 /PL"
littermates were used as controls and did not develop
any skin lesions. All E6"/PL™ animals developed UV-
induced skin tumors three weeks after UVB treatment,
in-line with previous findings that histologically showed
papillomatosis and hyperkeratosis. However, reactivation
of photolyase activity completely reversed the E6-induced
skin phenotype resulting in a dramatic and complete sup-
pression of tumor development in E6"/PL" mice after UV
irradiation (Fig. 1a). Staining for thymine dimers (T"T, as
marker for CPDs) revealed that CPDs, undetectable in un-
treated skin, were present in UV treated E6"/PL™ skin but
completely repaired 3 days after photoreactivation in
double transgenic mice (Fig. 1b). Thus, elimination of
CPDs by CPD-PL in K14 permissive skin cells of K14-
HPV8-E6wt transgenic mice impaired initiation of papil-
loma growth after UV-irradiation. These results provide
the first experimental in vivo evidence that the failure to
repair UV-induced CPDs constitutes the initial step in
HPV8-E6 mediated skin tumor development.

HPV8-E6 interference with CPD repair is essential for
papilloma formation

We have previously shown that expression of E6 of
HPV5, closely related to HPVS, impairs the repair of
UVB induced CPDs whereas E6 proteins of HPV10, 23,
24, 49 and 77 do not share this activity [17], suggesting
that specific HPV types may confer a pre-disposition to-
wards skin tumor development. We now show that in
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Fig. 1 Repair of CPDs in K14-HPV8-E6wt mice abrogates UV-induced skin tumor formation. a K14-HPV8-E6wt animals (FVB/n background) were
mated with K14-CPD-PL (FVB/n background) and offspring in F1 were irradiated with UV. The CPD-PL was reactivated by exposing animals to
white fluorescent light tubes. Figure shows representative macroscopical (upper panel) and histological (lower panel, magnifications are indicated)
skin images of E6 /PL™ (n=11), E6 /PL* (n=11), E6*/PL" (n=11) and E6*/PL" (n=7) animals taken 24 days after UV-irradiation b Representative
images of TAT stained skin sections of E6"/PL™ (n=3) and E6"/PL" (n = 3) mice collected 3 days after UV treatment and photoreactivation

8E6*/ PL- 8E6*/ PL*

addition to HPV5 (p <0.0001), HPV8 (p <0.0001) and
HPV20 (p = 0.0002) E6 proteins can also significantly delay
the repair of UVB induced T"T (see Additional file 1
Figure S1), suggesting that these HPV types may
present a greater tumorigenic risk.

In order to characterize further the activity of E6 in-
volved in the interference with DNA repair, a panel of
cell lines expressing previously characterized E6 proteins
with point mutations at residues conserved in HPV5 and
HPV8 E6 were investigated. All mutant proteins were
found to be stably expressed and retained the ability to
inhibit UVB-induced apoptosis [18]. Of the E6 mutants

tested, only K138N was severely impaired in its ability to
interfere with T/T repair (K138N versus E6wt, p = 0.0057;
K138N versus control, p =0.07; student t-test), while all
other mutants showed an activity that was similar to that
of the wild-type HPV5-E6 protein (HPV5-E6wt versus
control, p =0.0032, student t-test). This data suggest that
the integrity of the residue K138 is important for E6 to
delay T"T repair (Fig. 2a), and that the inhibition of apop-
tosis and interference with DNA repair pathways are func-
tionally separate activities of E6.

We then generated a K14-HPV8-E6K136N transgenic
mouse model (K136 in HPV8-E6 corresponds to HPV5-
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Fig. 2 Inhibition of DNA damage repair by 3-PV E6. a A panel of HPV5-E6 mutants were analysed using In-Cell Western to assay the delayed
repair phenotype. The K138N mutant completely abrogated the ability of HPV5-E6 to delay the repair of UVB induced TAT (n =3 in duplicate;
control vs. HPV5-E6wt, **, p = 0.0032; HPV5-E6wt vs. HPV5-E6K138N, **, p =
mean + SEM. b Representative macroscopical images (upper panel) and histology (lower panel, magnification as indicated) of FVB/n-wt (n=15),

K14-HPV8-E6wt (n = 12) and K14-HPV8-E6K136N animals (n = 50) taken 24 days after UV-irradiation. ¢ Bar diagram showing percentage of animals
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0.0057; control vs. HPV5-E6-K138N, p = 0.07). Data are presented as

E6-K138) to examine whether UV-induced skin tumor
development is impaired in these animals. Five weeks
old animals without skin abnormalities were irradiated
once with an inflammatory radiation dose known to
cause ‘sunburn’ (apoptotic) cell formation. After UV
treatment none of the mice lacking E6 expression had
developed skin lesions and their skin healed completely
from the UVB induced hyperplasia. While all K14-
HPV8-E6wt mice developed papillomas within 3 weeks
post irradiation, only 22 % of K14-HPV8-E6K136N
mice showed skin tumor formation, but in 78 % of E6
mutant mice the skin had healed completely (Fig. 2 b,c).
Tumor formation in the E6 mutant mice may be due
to the residual activity of K136 on the repair of T"T.

Since the mRNA levels of E6 play an important role
in papilloma induction after UV treatment, we com-
pared the E6 expression levels in K14-HPV8-E6wt
and K14-HPV8-E6K136N mouse lines. E6 mRNA was
measured by qRT-PCR in RNA from shaved skin bi-
opsies. Similar E6 levels were found in untreated nor-
mal skin (p =0.5414). At day 3 after UV irradiation,
the E6 levels increased to a similar extent in both lines
and showed no significant difference (p = 0.2904), indicat-
ing that differences in E6 expression levels are not respon-
sible for observed mouse skin phenotype (see Additional
file 2: Figure S2). These findings show that the ability of
E6 to interfere with TAT repair is critical for skin tumor
formation following UV exposure.
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DNA damage persists in UVB irradiated skin expressing
HPVS8 E6

Having found that E6 expression interfered with T"T re-
pair and that enhanced TAT repair abrogated the
tumorigenic potential of E6, we next asked whether
CPD lesions persisted and could be detected in UV
treated skin of these animals by immunohistochemistry.
As expected, T"Ts were not detected in non-irradiated
skin of any of the animals examined, however T"Ts were
readily detected 6 h after UV irradiation. One day after
UV treatment no difference in T"T levels were detected
between all mouse lines. However, three days after UV
irradiation only few TAT positive cells could be detected
in FVB/n-wt skin indicating efficient repair of these le-
sions. Significantly more T/T positive cells persisted in
the skin of K14-HPV8-Eé6wt compared to FVB/n-wt
control (p <0.0001) and K14-HPV8-E6-K136N mutant
mice (p =0.0003) (Fig. 3a,b).

Expression of HPV E6 proteins can bypass the G1 to S
phase cell cycle checkpoint [17]. As unrepaired T"T can
lead to the generation of highly genotoxic and poten-
tially mutagenic DSBs by DNA replication fork collapse
during S-phase, we also analyzed the skin of these three
mouse lines for the presence of phosphorylation of the
histone variant H2AX (termed yH2AX) that is indicative
of the presence of DSBs. Three days after UVB-
treatment YH2AX was not detected in cells of FVB/n-wt
mice, while in K14-HPV8-E6wt mice YH2AX was found
at both early (3d, 5d) and later (13d, 24d) time points
when papillomas had formed (Fig. 4). About 80 % of skin
biopsies of K14-HPV8-E6K136N mice collected at 3, 5,
13 and 24 days after treatment showed a YH2AX stain-
ing intensity comparable to FVB/n-wt, while about 20 %
showed a staining pattern similar to K14-HPV8-E6wt, a
staining pattern that was comparable to the tumor rate
found in these animals. These results indicate that the
ability of E6 to maintain DNA damage together with its
ability to over-ride normal cell cycle checkpoints,
thereby allowing damaged cells to persist and replicate
even whilst harboring DNA lesions, leads to the gener-
ation of highly mutagenic lesions that are known to be
associated with tumor formation.

E6-impairment of DNA damage repair is associated with
inhibition of DNA damage sensing

A key checkpoint in precancerous lesions that acts as a
barrier to constrain tumor cell progression is the activa-
tion of the DNA damage response (DDR) [19, 20], that
involves activation of two kinases, ATM and ATR, to-
gether with their down stream effectors Chkl and Chk2
that regulate multiple proteins involved in cell cycle con-
trol and apoptosis. Indeed, ATM appears to be the main
kinase phosphorylating H2AX in response to random
DNA DSBs, whereas ATR phosphorylation of H2AX is
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associated with UVC damage or replication stress [21].
To study the impact of E6 on DDR mediated sensing of
DNA damage early after UVB treatment, cell lines ex-
pressing HPV5-E6wt, HPV5-E6K138N or HPVS8-E6wt
were generated and treated with camptothecin (CPT, a
DNA damaging agent that generates DSBs), or irradiated
with 5 mJ/cm® UVB. While control cells lacking E6 ex-
pression mounted a DDR as evidenced by phosphoryl-
ation of ATR (Ser428), expression of either HPV5 or
HPV8 E6 protein blocked ATR phosphorylation (Fig. 5a).
The detection of low levels of pATR in the E6 cells was
however not due to E6-induced proteolysis as total levels
of ATR were not significantly affected. The phosphoryl-
ation pattern for Chkl (Ser317) correlated with the acti-
vation of ATR, providing further evidence that this
signaling pathway is inhibited by expression of E6. In
contrast, expression of the HPV5-E6K138N mutant that
was impaired for inhibition of TAT repair did not alter
the phosphorylation patterns of either ATR or Chkl.

The activation of the DDR was also investigated in
organotypic skin cultures generated from primary hu-
man adult keratinocytes that had been transduced with
an E6-expressing retroviral construct or empty vector.
Immunohistochemical analysis revealed the presence of
TAT in UVB-treated E6 cultures 24 h post UVB treat-
ment, whereas TAT were not detected in the UVB-
treated control culture (Fig. 5b). Thus, the pattern of
TAT staining in epidermal layers of primary keratino-
cytes correlated closely with the detection of TAT in cell
lines. While phosphorylated ATR and ATM was ob-
served in the nuclei of control cultures lacking E6 ex-
pression, in HPV8-E6 cultures no ATM or ATR
phosphorylation was found, a staining pattern that cor-
related inversely with the detection of TAT following
UVB irradiation. These findings show that while DNA
damage persists in E6-expressing cells they fail to sense
and mount a DDR, thereby by-passing a critical barrier
to tumor formation.

Impaired p300 binding by HPV8-E6K136N

The interference of cutaneous E6 proteins with p300 is a
property that is needed for cellular immortalization and
tumorigenesis and E6 mutant proteins that have lost the
ability to bind p300 cannot execute this tumorigenic ac-
tivity (Miinch et al,, 2010). It was previously shown that
HPV8-E6 interacts with the cellular transcription co-
activator and histone acetyl-transferase p300 [22-27]
and that a deletion mutant of HPV8-E6 protein lacking
amino acid 132-136 does not bind p300 anymore [22].
Since K136 lies within the p300-binding domain of
HPV8-E6 we analysed whether HPV8-E6K136N still in-
teracts with p300 in keratinocytes. As shown in Fig. 5c,
levels of p300 in total cell extracts were not changed
upon HPV8-E6 expression. While HPV8-E6wt bound
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Fig. 3 Persistence of DNA damage in UVB treated skin of K14-HPV8-E6 mice. a Paraffin embedded skin sections of UV treated skin from FVB/n-wt,
K14-HPV8-Eéwt and K14-HPV8-E6K136N mice were stained for TAT (magnification: 400x). Representative images of n =4 skin biopsies per time-point
per mouse line are shown. b TAT positive cells were quantified by counting positive cells per 3 fields of n =4 animals per mouse line and time-point.
At day 1 after UV treatment, no significant difference in the number of TAT positive cells were observed (FVB/n-wt vs. K14-HPV8-E6wrt,
p=0.1094; FVB/n-wt vs. K14-HPV8-E6-K136N, p =0.1769; K14-HPV8-E6wt vs. K14-HPV8-E6-K136N, p=0.8115). Three days after treatment
significantly more TAT positive cells persisted in the skin of K14-HPV8-Eéwt mice (FVB/n-wt vs. K14-HPV8-E6wt, ****, p < 0.0001; FVB/n-wt
vs. K14-HPV8-E6-K136N, **** p < 0.0001; K14-HPV8-E6wt vs. K14-HPV8-E6-K136N, ***, p=0.0003). Data are presented as mean + SEM
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Fig. 4 Presence of DNA damage in UV treated skin of K14-HPV8-E6 mice. Paraffin embedded skin sections of UV treated skin were stained for
YH2AX (magnification: 400x). Representative images of n =4 mouse skin biopsies per time-point are shown
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p300, the mutant HPV8-E6K136N nearly completely
lost the ability to complex with p300. To exclude
that missing binding to p300 resulted from a chan-
ged tertiary structure of HPV8-E6K136N, the ability
of the mutant protein to bind to the known cellular

target proteins MAML1 and SMAD3 [25] was stud-
ied. The aa substitution of K136N in HPVS8-E6 did
not affect binding to MAML1 and SMAD3 (Fig. 6).
At least in RTS3b keratinocytes and C33a cells (data
not shown) we did not observe degradation of p300
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Fig. 5 Expression of E6 inhibits phosphorylation of ATM and ATR. a Representative immunoblots (n = 3) showing that HPV5 and HPV8 E6

inhibit ATR as well as Chk1 phosphorylation measured 24 h following UVB irradiation or 4 h of camptothecin treatment. Normal phosphorylation
patterns are restored through mutation of HPV5-E6 at K138. Total levels of ATR and Chk1 were unaffected by E6 expression. b Expression of
HPV8-E6 in organotypic cultures delays DNA repair and DNA damage sensing. Cultures expressing HPV8-E6 or pLXSN empty vector grown in
parallel were irradiated with 20 mJ/cm? UVB 24 hours prior to fixation. Representative immunohistochemical staining (n = 3) experiments showing
phosphorylation of ATM and ATR in control cells and lack of phosphorylation in HPV8-E6 expressing cells, which correlates with the presence of

upon HPV8-E6 expression in contrast to findings of
Howie et al. (2011) [24] in other cell types. In line
with stable p300 levels, total amounts of ATR were
also not significantly affected (Fig. 5a), whereas Wallace
et al. (2012) [28] observed reduced ATR levels cor-
relating with p300 degradation. In summary, our
data suggest that HPV8-E6 binding to p300 corre-
lates with reduced levels of phosphorylated ATR and
impaired DDR without affecting the levels of p300
and total ATR.

Conclusion

Since B-PV are part of the normal microbiological flora
of the skin, viral infection per se does not represent the
major event in skin carcinogenesis [29]. The high preva-
lence of B-PV infection in healthy humans and low levels
of viral DNA in the skin is raising the question how -
PV could affect SCC development in humans. Given that
B-PV DNA loads in premalignant lesions exceed those
in SCC, the interaction of B-PV E6 oncoprotein with the
DNA repair mechanisms at early stage of skin tumor
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Fig. 6 Impaired p300 binding by HPV8-E6K136N. Extracts from RTS3b
cells, which were transiently transfected with expression vectors for
the empty vector, Flag-8E6wt or Flag-8E6K136N were incubated with
M2-FLAG-agarose. Co-immunoprecipitated p300, MAML1 and SMAD3
and 10 % of the input extracts were detected by Western blot with
specific antibodies. The expression of HPV8-E6 was confirmed by a
Western blot against the Flag tag. Equal protein loading was confirmed
by tubulin expression

formation may allow non-repaired or incorrectly repaired
UV-induced lesions to persist, and this, coupled with the
anti-apoptotic activity of E6, can facilitate the generation
and propagation of deleterious mutations that drive tumor
initiation and progression. Our results provide the first ex-
perimental in vivo evidence that impairment of the DNA
repair machinery in basal cells is necessary for initiation of
papilloma growth by E6 and that CPD lesions are
mandatory for E6-mediated tumorigenesis. The interfer-
ence of E6wt with phosphorylation of the cell cycle check-
point kinases and p300 may have contributed to
accumulation of DSBs and to the relief of cell cycle arrest
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resulting in skin hyperplasia in K14-HPV8-E6wt mouse.
Our findings provide the first in vivo mechanistic data on
the tumorigenicity of HPV8 and direct evidence supporting
the hypothesis that B-PV may play a role early in skin cancer
development by enhancing the genotoxic effects of UV light.

Materials and methods

Plasmids

For generation of HA-tagged HPV5, HPV8 and HPV20
E6 proteins, corresponding ORFs were amplified by PCR
from viral genomes with specific primers flanking a
BamHI and Xhol restriction sites. The PCR products
were then ligated into pcDNA3.1-5HA [17]. The
pcDNA3.1-5HA based mutants of HPV5-E6 have been de-
scribed previously [18]. Site-directed mutagenesis of HPV8-
E6 in K14CreERtam-HPVS8-E6 (also called K14-HPVS8-E6;
[12]) and pcDNA3.1-Flag-HPV8-E6 was performed using
the QuickChange Site-directed mutagenesis kit (Stratagene)
with the primers HPV8-E6K136N-fw: 5 CGTCCCTTTCA
TAACGTTAGAGGAGGCTG 3’ and HPV8-E6K136N-bw:
5 CAGCCTCCTCTAACGTTATGAAAGGGACG 3 lead-
ing to an AAA — AAC exchange giving rise to HPVS8-
E6K136N.

Commercial antibodies

The antibodies used in this study were the following: anti-
thymine dimer (Insight Biotechnology), (anti-yH2AX,
MABE205, Millipore, Schwalbach, Germany), anti-pATM
(ser1981, Rockland), anti-ATR (Santa Cruz), anti-pATR
(ser428, Cell Signalling), anti-Chkl (Santa Cruz), anti-
pChkl (ser317, Cell Signalling), and anti-tubulin (YL1/2,
Abcam), FLAG-M5 monoclonal antibody (A2220, Sigma),
anti-p300 (C-20, Santa Cruz), anti-tubulin (YL1/2, Abcam),
anti-MAML1 (Cell Signalling), anti-SMAD3 (Abcam).

Cell culture, transfection and western blot

HT1080 cells were maintained in DMEM plus 10 %
foetal calf serum supplemented with antibiotics, in a hu-
midified atmosphere at 37 °C, 5 % CO? Polyclonal cell
lines were generated by transfecting plasmid DNA using
FuGENE 6 transfection reagent (Roche) according to the
manufacturer’s instructions. Exponentially growing cells
were treated with 6 pM camptothecin (CPT, Sigma) for
4 h prior to protein harvesting or irradiated with 5 m]J/
cm2 UVB, using a UV Products CL400 cross-linker fit-
ted with F8T5 bulbs that give a sharp emission peak at
312 nm, and cultured for a further 8, 24 or 48 h. TAT in
HT1080 cells were quantified using an In-Cell Western
methodology employing the LiCOR Odyssey immuno-
fluorescence detection system. For this, cells were then
washed twice in PBS and fixed in 3.7 % paraformalde-
hyde for 20 min at RT and then permeablized using
0.1 % TritonX-100 in PBS for 10 min. Cells were blocked
in Odyssey Blocking Buffer (OBB, LiCOR) diluted 1:1 in
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PBS for 1 h at RT. TAT were detected using the anti-
thymine dimer antibody at 1:500 dilution in OBB/PBS
plus 0.1 % Tween20 followed by sheep anti-mouse
IRDye™ 800CW at 1:800 dilution (Rockland Immuno-
chemicals) in OBB plus 0.2 % Tween-20. Syto60 nucleic
acid stain (LICOR) was used at a 1:5000 dilution in
OBB/PBS/Tween for normalization of the dimer signal.
Cells were visualized and fluorescence quantified using a
LiCOR Odyssey Infrared Imaging Scanner and quantifi-
cation software. For Western blots with whole cell pro-
tein extracts adherent cells were lysed in RIPA buffer.
20 pg of protein was loaded onto SDS-PAGE gels and
transferred onto nitrocellulose membrane according to
standard procedures. The human keratinocyte cell line
RTS3b was maintained in RM+ media [30]. 2,5 x 10°
cells were seeded in 10 cm dishes and transfected with
10 pg of plasmid DNA with FUuGENE 6. Two days after
transfection the cells were washed with PBS and har-
vested by scraping in 100 mM LSDB buffer (100 mM
KCL, 50 mM Tris—HCl, 20 % glycerol and 0.1 % NP-40,
1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluor-
ide and 1x protease inhibitor Complete. For Co-IP ex-
periments, extracts were incubated with FLAG-M2
antibody coupled to agarose (A2220, Sigma) for 2 h at
4 °C, followed by three washes with LSDB containing
different KCl concentrations. Cellular proteins binding
to E6 were detected by Western blotting with specific
antibodies. De-epidermalized human dermis based orga-
notypic cultures of primary human keratinocytes ex-
pressing HPV8-E6 were previously described [31, 32].

Mouse lines

Mouse lines used in this study included FVB/n-wt (Charles
River Laboratories, Sulzfeld, Germany), the transgenic
hemizygous FVB/N line K14-HPV8-E6wt [12] and the
transgenic hemizygous C57BL/6 ] mice expressing the
Potorous tridactylus CPD photolyase (CPD-PL) under the
control of the hK14 promoter (K14-CPD-PL; [5, 7]). To
generate the KI14-HPV8-E6K136N line, the linearized
transgene, in which the HPV8-E6K136N gene is under the
control of the human keratin-14 (K14) promoter, was
microinjected into the pro-nucleus of fertilized FVB/n oo-
cytes, which were implanted into pseudopregnant surrogate
mothers to produce putative founder mice. To detect trans-
genic mice PCR analysis was performed as described previ-
ously [12]. Briefly, genomic DNA was isolated from tail
biopsies of 3-week-old mice using the QIAmp Tissue kit
(Qiagen, Hilden, Germany). Samples of genomic mouse
DNA were analysed for presence of the transgene by PCR,
using the following primers: HPV8-E6-fw: ggatcctttectaage
aaatggacggg; HPV8-E6-bw: ggatccgcatgecacaaaatcttgeacagt
gacctc; CPD-PL-fw: tgagactcatctcccaggac; CPD-PL-bw: cac
caatgccatgtgtttgc. The PCR reaction conditions consisted of
a 3-minute denaturation step (95 °C) and 35 cycles of
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amplification (95 °C, 30 seconds; 60 °C, 1.5 min; 72 °C,
1 min). K14-CPD-PL mice (C57/BL6) were back-crossed
with FVB/n-wt animals for 5 generations and then mated
to K14-HPV8-E6wt (FVB/n).

UV irradiation and photoreactivation of mouse skin

UV irradiation protocols were approved by the govern-
mental animal care office North-Rhine-Westphalia
(Leibnizstrafle 10, 45659 Recklinghausen, protocol no.
8.87-50.10.35.08.163) and were in accordance with the
German Animal Welfare Act as well as the German
Regulation for the protection of animals used for experi-
mental purposes. For dorsal caudal skin irradiation age
(5 weeks) and sex matched mice were irradiated once
with 10 J/cm?® UVA and 1 J/cm® UVB on a 4 cm? sized
area. For photoreactivation after UV treatment, double
transgene positive animals were exposed to the light of 4
white fluorescent tubes (GE Lightning Polylux XL
F36W/840) filtered through 5 mm of glass. All offspring
were macroscopically examined for the presence of skin
lesions on day 34 after UV treatment.

Immunohistochemistry

4 pM sections on polylysine coated slides from formalin
fixed, paraffin-embedded organotypic cultures and mouse
skin were analysed. Sections were deparaffinised by washing
in 100 % Xylene, rehydrated through washing in decreasing
concentrations of ethanol. Sections were then incubated in
3 % hydrogen peroxide in methanol for 20 min to inhibit
endogenous peroxidises. Antigen unmasking was per-
formed by boiling the tissue sections in 10 mM citric buffer
for 3 min in a beaker in a microwave followed by 15 min
resting at RT. Sections were then blocked in 50 % horse
serum in PBS (v/v) for 30 min. Primary antibody was di-
luted in 2 % horse serum/PBS and incubated overnight at
4 °C. A biotinylated secondary antibody was applied and
slides were visualized using a streptavidin-biotin-
peroxidase detection system (Vectastain ABC or M.O.M.
kit, Linaris, Dossenheim, Germany) using DAB (3,3'-
diaminobenzidine) liquid substrate (Biogenex, Fremont,
CA, USA). Sections were counterstained in Gills Haema-
toxylin and dehydrated through washing in increasing con-
centrations of ethanol, then mounted in DePeX mounting
medium (Serva, Heidelberg, Germany) and visualised using
an Zeiss Axiophot microscope and imaging software.

qRT-PCR

Total RNA isolation, reverse transcription and qPCR
were performed as described previously [33]. Total RNA
was isolated from tissues and cells using the RNeasy Kit
and DNAse digestion was performed on column using
RNAse-free DNAse according to the manufacturer’s in-
structions (Qiagen, Hilden, Germany). One ug of total
RNA was reverse transcribed using the Omniscript RT Kit
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(Qiagen, Hilden, Germany) with 10 pM Random nona-
mers (TIB MOLBIOL, Berlin, Germany) and 1 uM oligo-
dT23-primer (Sigma, Deisenhofen, Germany) as well as
10 units RNAse Inhibitor (Fermentas, St. Leon-Rot,
Germany). QPCR was performed using the Light-Cycler
System (Roche, Mannheim, Germany). Total transcript
numbers of the target gene were normalized to the total
copy number of the house-keeping gene hypoxanthine
phosphoribosyltransferase 1 (HPRT1). One PCR reaction
contained 2 pl of 1:10 diluted cDNA in a total volume of
20 pl, 1.25 units Platinum Taq Polymerase and the pro-
vided buffer (Invitrogen, Karlsruhe, Germany), 4 mM
MgCl2, 1.6 pl of a 1:1000 dilution of SYBGreen (Sigma,
Deisenhofen, Germany), 5 % DMSO, 0.5 uM of forward
and backward primer each, 500 ng/ul non-acetylated bo-
vine serum albumin (Fermentas, St. Leon-Rot, Germany)
and 0.2 mM deoxynucleotide triphosphates each. Ampli-
fied PCR fragments were cloned into pJET1.2 (Qiagen,
Hilden, Germany) to generate absolute standards with
primers also used for subsequent qPCR analysis. Sam-
ples were analysed in duplicate together with a 10-
fold dilution series of standard plasmid. The cycling
protocol conditions were 10 minutes at 95 °C,
followed by 40 cycles of 15 second at 95 °C (20 °C/s),
30 seconds at 55 °C (20 °C/s) and 30 seconds at 72 °C
(20 °C/s). The primers used in this study were the follow-
ing: mHPRT1-fw: cctaagatgagcgcaagttgaa; mHPRT1-bw:
ccacaggactagaacacctgctaa; HPV8-E6-fw: ccgcaacgtttgaattt
aatg; HPV8-E6-bw: attgaacgtcctgtagctaattca.

Statistical analysis

All experiments were repeated a minimum of three times.
All data from In Cell Western blot assays and qRT-PCRs
were expressed as mean + SEM. The data presented as im-
munoblots or images of immunohistochemical analysis are
from a representative experiment, which was qualitatively
similar in the replicate experiments. Statistical significance
was determined with unpaired 2-tailed Student’s ¢-test. The
asterisks shown in the figures indicate significant differ-
ences of experimental groups (*p<0.05; **p<0.01,
***p <0.001, ***p < 0.0001).

Additional files

Additional file 1: Figure S1. Inhibition of TAT repair by B-PV E6.
HT1080 cells expressing E6 genes of B-PV types 5, 8 and 20 were
irradiated with UVB and levels of T"T were assayed using In-Cell Western
analysis (n =4 in duplicate, HPV5,**** p < 0.0001; HPV8, **** p < 0.0001;
HPV20, ***, p=0.0002). Data are presented as mean + SEM. (PPT 151 kb)

Additional file 2: Figure S2. Comparable E6 mRNA expression levels in
mouse skin. Skin biopsies from K14-HPV8-E6wt and K14-HPV8-E6K136N
lines were taken at the indicated time points after UV irradiation and
HPV8 E6 mRNA levels were measured in duplicate by gRT-PCR and
normalized to the mRNA levels of HPRT1 (n = 6; untreated skin, p =0.5414;
3d post UV-treatment, p=0.2904). Data are presented as mean + SEM.
(PPTX 59 kb)
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