44 research outputs found

    The hippocampus and spatial constraints on mental imagery

    Get PDF
    We review a model of imagery and memory retrieval based on allocentric spatial representation by place cells and boundary vector cells (BVCs) in the medial temporal lobe, and their translation into egocentric images in retrosplenial and parietal areas. In this model, the activity of place cells constrain the contents of imagery and retrieval to be coherent and consistent with the subject occupying a single location, while the activity of head-direction cells along Papez's circuit determine the viewpoint direction for which the egocentric image is generated. An extension of this model is discussed in which a role for grid cells in dynamic updating of representations (mental navigation) is included. We also discuss the extension of this model to implement a version of the dual representation theory of post-traumatic stress disorder (PTSD) in which PTSD arises from an imbalance between weak allocentric hippocampal-mediated contextual representations and strong affective/sensory representations. The implications of these models for behavioral, neuropsychological, and neuroimaging data in humans are explored

    Linked networks for learning and expressing location-specific threat

    Get PDF
    Learning locations of danger within our environment is a vital adaptive ability whose neural bases are only partially understood. We examined fMRI brain activity while participants navigated a virtual environment in which flowers appeared and were “picked.” Picking flowers in the danger zone (one-half of the environment) predicted an electric shock to the wrist (or “bee sting”); flowers in the safe zone never predicted shock; and household objects served as controls for neutral spatial memory. Participants demonstrated learning with shock expectancy ratings and skin conductance increases for flowers in the danger zone. Patterns of brain activity shifted between overlapping networks during different task stages. Learning about environmental threats, during flower approach in either zone, engaged the anterior hippocampus, amygdala, and ventromedial prefrontal cortex (vmPFC), with vmPFC–hippocampal functional connectivity increasing with experience. Threat appraisal, during approach in the danger zone, engaged the insula and dorsal anterior cingulate (dACC), with insula–hippocampal functional connectivity. During imminent threat, after picking a flower, this pattern was supplemented by activity in periaqueductal gray (PAG), insula–dACC coupling, and posterior hippocampal activity that increased with experience. We interpret these patterns in terms of multiple representations of spatial context (anterior hippocampus); specific locations (posterior hippocampus); stimuli (amygdala); value (vmPFC); threat, both visceral (insula) and cognitive (dACC); and defensive behaviors (PAG), interacting in different combinations to perform the functions required at each task stage. Our findings illuminate how we learn about location-specific threats and suggest how they might break down into overgeneralization or hypervigilance in anxiety disorders

    Medial prefrontal-medial temporal theta phase coupling in dynamic spatial imagery

    Get PDF
    Hippocampal–medial prefrontal interactions are thought to play a crucial role in mental simulation. Notably, the frontal midline/medial pFC (mPFC) theta rhythm in humans has been linked to introspective thought and working memory. In parallel, theta rhythms have been proposed to coordinate processing in the medial temporal cortex, retrosplenial cortex (RSc), and parietal cortex during the movement of viewpoint in imagery, extending their association with physical movement in rodent models. Here, we used noninvasive whole-head MEG to investigate theta oscillatory power and phase-locking during the 18-sec postencoding delay period of a spatial working memory task, in which participants imagined previously learned object sequences either on a blank background (object maintenance), from a first-person viewpoint in a scene (static imagery), or moving along a path past the objects (dynamic imagery). We found increases in 4- to 7-Hz theta power in mPFC when comparing the delay period with a preencoding baseline. We then examined whether the mPFC theta rhythm was phase-coupled with ongoing theta oscillations elsewhere in the brain. The same mPFC region showed significantly higher theta phase coupling with the posterior medial temporal lobe/RSc for dynamic imagery versus either object maintenance or static imagery. mPFC theta phase coupling was not observed with any other brain region. These results implicate oscillatory coupling between mPFC and medial temporal lobe/RSc theta rhythms in the dynamic mental exploration of imagined scenes

    Allocentric spatial memory performance predicts intrusive memory severity in posttraumatic stress disorder

    Get PDF
    BACKGROUND: Posttraumatic stress disorder (PTSD) is characterised by distressing trauma-related memories. According to the dual representation theory, intrusive memories arise from strengthened egocentric encoding and a poor contextual encoding, with spatial context requiring allocentric processing. Contextualization of mental imagery is proposed to be formed hierarchically through the ventral visual stream (VVS) to the hippocampal formation. Here, we tested this notion by investigating whether neuronal aberrations in structures of the VVS or in the hippocampus, as well as allocentric memory performance are associated with intrusive memory severity. METHODS: The sample comprised 33 women with PTSD due to childhood trauma. Allocentric memory performance was measured with the virtual Town Square Task and T1-weighted images acquired on a 3T Siemens Scanner. Intrusive memories were evoked by presenting an audio script describing parts of their trauma (script-driven imagery). RESULTS: Using hierarchical linear regression analysis, we found a significant association between lower intrusive memory severity and higher allocentric spatial memory, controlling for age, working memory, and general visuospatial ability. No significant association was found between cortical thickness of VVS structures, hippocampal volume and intrusive memory severity. Post hoc exploratory analyses revealed a negative correlation between years since index trauma and left hippocampal volume. LIMITATIONS: Our results are based on correlational analyses, causality cannot be inferred. CONCLUSION: This study supports the dual representation theory, which emphasizes the role of allocentric spatial memory for the contextualization of mental imagery in PTSD. Clinical implications are discussed

    Evidence for holistic episodic recollection via hippocampal pattern completion

    Get PDF
    Recollection is thought to be the hallmark of episodic memory. Here we provide evidence that the hippocampus binds together the diverse elements forming an event, allowing holistic recollection via pattern completion of all elements. Participants learn complex 'events' from multiple overlapping pairs of elements, and are tested on all pairwise associations. At encoding, element 'types' (locations, people and objects/animals) produce activation in distinct neocortical regions, while hippocampal activity predicts memory performance for all within-event pairs. When retrieving a pairwise association, neocortical activity corresponding to all event elements is reinstated, including those incidental to the task. Participant's degree of incidental reinstatement correlates with their hippocampal activity. Our results suggest that event elements, represented in distinct neocortical regions, are bound into coherent 'event engrams' in the hippocampus that enable episodic recollection--the re-experiencing or holistic retrieval of all aspects of an event--via a process of hippocampal pattern completion and neocortical reinstatement

    Hippocampal theta activity during encoding promotes subsequent associative memory in humans

    Get PDF
    Hippocampal theta oscillations have been implicated in associative memory in humans. However, findings from electrophysiological studies using scalp electroencephalography or magnetoencephalography, and those using intracranial electroencephalography are mixed. Here we asked 10 pre-surgical epilepsy patients undergoing intracranial electroencephalography recording, along with 21 participants undergoing magnetoencephalography recordings, to perform an associative memory task, and examined whether hippocampal theta activity during encoding was predictive of subsequent associative memory performance. Across the intracranial electroencephalography and magnetoencephalography studies, we observed that theta power in the hippocampus increased during encoding, and that this increase differed as a function of subsequent memory, with greater theta activity for pairs that were successfully retrieved in their entirety compared with those that were not remembered. This helps to clarify the role of theta oscillations in associative memory formation in humans, and further, demonstrates that findings in epilepsy patients undergoing intracranial electroencephalography recordings can be extended to healthy participants undergoing magnetoencephalography recordings

    Value-based decision-making of cigarette and nondrug rewards in dependent and occasional cigarette smokers:An FMRI study

    Get PDF
    Little is known about the neural functioning that underpins drug valuation and choice in addiction, including nicotine dependence. Following ad libitum smoking, 19 dependent smokers (smoked≥10/day) and 19 occasional smokers (smoked 0.5‐5/week) completed a decision‐making task. First, participants stated how much they were willing‐to‐pay for various amounts of cigarettes and shop vouchers. Second, during functional magnetic resonance imaging, participants decided if they wanted to buy these cigarettes and vouchers for a set amount of money. We examined decision‐making behaviour and brain activity when faced with cigarette and voucher decisions, purchasing (vs not purchasing) cigarettes and vouchers, and “value signals” where brain activity correlated with cigarette and voucher value. Dependent smokers had a higher willingness‐to‐pay for cigarettes and greater activity in the bilateral middle temporal gyrus when faced with cigarette decisions than occasional smokers. Across both groups, the decision to buy cigarettes was associated with activity in the left paracingulate gyrus, right nucleus accumbens, and left amygdala. The decision to buy vouchers was associated with activity in the left superior frontal gyrus, but dependent smokers showed weaker activity in the left posterior cingulate gyrus than occasional smokers. Across both groups, cigarette value signals were observed in the left striatum and ventromedial prefrontal cortex. To summarise, nicotine dependence was associated with greater behavioural valuation of cigarettes and brain activity during cigarette decisions. When purchasing cigarettes and vouchers, reward and decision‐related brain regions were activated in both groups. For the first time, we identified value signals for cigarettes in the brain

    Human hippocampal theta power indicates movement onset and distance travelled

    Get PDF
    Theta frequency oscillations in the 6- to 10-Hz range dominate the rodent hippocampal local field potential during translational movement, suggesting that theta encodes self-motion. Increases in theta power have also been identified in the human hippocampus during both real and virtual movement but appear as transient bursts in distinct high- and low-frequency bands, and it is not yet clear how these bursts relate to the sustained oscillation observed in rodents. Here, we examine depth electrode recordings from the temporal lobe of 13 presurgical epilepsy patients performing a selfpaced spatial memory task in a virtual environment. In contrast to previous studies, we focus on movement-onset periods that incorporate both initial acceleration and an immediately preceding stationary interval associated with prominent theta oscillations in the rodent hippocampal formation. We demonstrate that movementonset periods are associated with a significant increase in both low (2–5 Hz)- and high (6–9 Hz)-frequency theta power in the human hippocampus. Similar increases in low- and high-frequency theta power are seen across lateral temporal lobe recording sites and persist throughout the remainder of movement in both regions. In addition, we show that movement-related theta power is greater both before and during longer paths, directly implicating human hippocampal theta in the encoding of translational movement. These findings strengthen the connection between studies of theta-band activity in rodents and humans and offer additional insight into the neural mechanisms of spatial navigation
    corecore