294 research outputs found

    Tilt Aftereffects in a Self-Organizing Model of the Primary Visual Cortex

    Get PDF
    RF-LISSOM, a self-organizing model of laterally connected orientation maps in the primary visual cortex, was used to study the psychological phenomenon known as the tilt aftereffect. The same self-organizing processes that are responsible for the long-term development of the map are shown to result in tilt aftereffects over short time scales in the adult. The model permits simultaneous observation of large numbers of neurons and connections, making it possible to relate high-level phenomena to low-level events, which is difficult to do experimentally. The results give detailed computational support for the long-standing conjecture that the direct tilt aftereffect arises from adaptive lateral interactions between feature detectors. They also make a new prediction that the indirect effect results from the normalization of synaptic efficacies during this process. The model thus provides a unified computational explanation of self-organization and both the direct and indirect tilt aftereffect in the primary visual cortex

    Topographica: Building and Analyzing Map-Level Simulations from Python, C/C++, MATLAB, NEST, or NEURON Components

    Get PDF
    Many neural regions are arranged into two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered by the lack of appropriate tools. It has been particularly difficult to bridge across levels of detail, because simulators are typically geared to a specific level, while interfacing between simulators has been a major technical challenge. In this paper, we show that the Python-based Topographica simulator makes it straightforward to build systems that cross levels of analysis, as well as providing a common framework for evaluating and comparing models implemented in other simulators. These results rely on the general-purpose abstractions around which Topographica is designed, along with the Python interfaces becoming available for many simulators. In particular, we present a detailed, general-purpose example of how to wrap an external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines of Python code, making it possible to use any of the extensive input presentation, analysis, and plotting tools of Topographica. Additional examples show how to interface easily with models in other types of simulators. Researchers simulating topographic maps externally should consider using Topographica's analysis tools (such as preference map, receptive field, or tuning curve measurement) to compare results consistently, and for connecting models at different levels. This seamless interoperability will help neuroscientists and computational scientists to work together to understand how neurons in topographic maps organize and operate

    Edge co-occurrences can account for rapid categorization of natural versus animal images

    No full text
    International audienceMaking a judgment about the semantic category of a visual scene, such as whether it contains an animal, is typically assumed to involve high-level associative brain areas. Previous explanations require progressively analyzing the scene hierarchically at increasing levels of abstraction, from edge extraction to mid-level object recognition and then object categorization. Here we show that the statistics of edge co-occurrences alone are sufficient to perform a rough yet robust (translation, scale, and rotation invariant) scene categorization. We first extracted the edges from images using a scale-space analysis coupled with a sparse coding algorithm. We then computed the "association field" for different categories (natural, man-made, or containing an animal) by computing the statistics of edge co-occurrences. These differed strongly, with animal images having more curved configurations. We show that this geometry alone is sufficient for categorization, and that the pattern of errors made by humans is consistent with this procedure. Because these statistics could be measured as early as the primary visual cortex, the results challenge widely held assumptions about the flow of computations in the visual system. The results also suggest new algorithms for image classification and signal processing that exploit correlations between low-level structure and the underlying semantic category

    Hebbian Learning of the Statistical and Geometrical Structure of Visual Input

    Get PDF

    Computational Modeling of Contrast Sensitivity and Orientation Tuning in Schizophrenia

    Get PDF
    Computational modeling is being increasingly used to understand schizophrenia, but, to date, it has not been used to account for the common perceptual disturbances in the disorder. We manipulated schizophrenia-relevant parameters in the GCAL (gain control, adaptation, laterally connected) model (Stevens et al., 2013), run using the Topographica simulator (Bednar, 2012), to model low-level visual processing changes in the disorder. Our models incorporated: separate sheets for retinal, LGN, and V1 activity; gain control in the LGN; homeostatic adaptation in V1 based on a weighted sum of all inputs and limited by a logistic (sigmoid) nonlinearity; lateral excitation and inhibition in V1; and self-organization of synaptic weights based on Hebbian learning. Data indicated that: 1) findings of increased contrast sensitivity for low spatial frequency stimuli in first episode schizophrenia (FES) can be successfully modeled as a function of reduced retinal and LGN efferent activity within the context of normal LGN gain control and cortical mechanisms (see Figure 1); and 2) findings of reduced contrast sensitivity and broadened orientation tuning in chronic schizophrenia can be successfully modeled by a combination of reduced V1 lateral inhibition and an increase in the Hebbian learning rate at V1 synapses for LGN input (see Figures 1-3). These models are consistent with many current findings (Silverstein, 2016) and they predict relationships that have not yet been explored. They also have implications for understanding links between perceptual changes and psychotic symptom formation, and for understanding changes during the long-term course of the disorder

    Development of Maps of Simple and Complex Cells in the Primary Visual Cortex

    Get PDF
    Hubel and Wiesel (1962) classified primary visual cortex (V1) neurons as either simple, with responses modulated by the spatial phase of a sine grating, or complex, i.e., largely phase invariant. Much progress has been made in understanding how simple-cells develop, and there are now detailed computational models establishing how they can form topographic maps ordered by orientation preference. There are also models of how complex cells can develop using outputs from simple cells with different phase preferences, but no model of how a topographic orientation map of complex cells could be formed based on the actual connectivity patterns found in V1. Addressing this question is important, because the majority of existing developmental models of simple-cell maps group neurons selective to similar spatial phases together, which is contrary to experimental evidence, and makes it difficult to construct complex cells. Overcoming this limitation is not trivial, because mechanisms responsible for map development drive receptive fields (RF) of nearby neurons to be highly correlated, while co-oriented RFs of opposite phases are anti-correlated. In this work, we model V1 as two topographically organized sheets representing cortical layer 4 and 2/3. Only layer 4 receives direct thalamic input. Both sheets are connected with narrow feed-forward and feedback connectivity. Only layer 2/3 contains strong long-range lateral connectivity, in line with current anatomical findings. Initially all weights in the model are random, and each is modified via a Hebbian learning rule. The model develops smooth, matching, orientation preference maps in both sheets. Layer 4 units become simple cells, with phase preference arranged randomly, while those in layer 2/3 are primarily complex cells. To our knowledge this model is the first explaining how simple cells can develop with random phase preference, and how maps of complex cells can develop, using only realistic patterns of connectivity

    Cortical Maps

    Get PDF
    In this article, we review functional organization in sensory cortical regions-how the cortex represents the world. We consider four interrelated aspects of cortical organization: (1) the set of receptive fields of individual cortical sensory neurons, (2) how lateral interaction between cortical neurons reflects the similarity of their receptive fields, (3) the spatial distribution of receptive-field properties across the horizontal extent of the cortical tissue, and (4) how the spatial distributions of different receptive-field properties interact with one another. We show how these data are generally well explained by the theory of input-driven self-organization, with a family of computational models of cortical maps offering a parsimonious account for a wide range of map-related phenomena. We then discuss important challenges to this explanation, with respect to the maps present at birth, maps present under activity blockade, the limits of adult plasticity, and the lack of some maps in rodents. Because there is not at present another credible general theory for cortical map development, we conclude by proposing key experiments to help uncover other mechanisms that might also be operating during map development

    Modeling the Emergence of Whisker Direction Maps in Rat Barrel Cortex

    Get PDF
    Based on measuring responses to rat whiskers as they are mechanically stimulated, one recent study suggests that barrel-related areas in layer 2/3 rat primary somatosensory cortex (S1) contain a pinwheel map of whisker motion directions. Because this map is reminiscent of topographic organization for visual direction in primary visual cortex (V1) of higher mammals, we asked whether the S1 pinwheels could be explained by an input-driven developmental process as is often suggested for V1. We developed a computational model to capture how whisker stimuli are conveyed to supragranular S1, and simulate lateral cortical interactions using an established self-organizing algorithm. Inputs to the model each represent the deflection of a subset of 25 whiskers as they are contacted by a moving stimulus object. The subset of deflected whiskers corresponds with the shape of the stimulus, and the deflection direction corresponds with the movement direction of the stimulus. If these two features of the inputs are correlated during the training of the model, a somatotopically aligned map of direction emerges for each whisker in S1. Predictions of the model that are immediately testable include (1) that somatotopic pinwheel maps of whisker direction exist in adult layer 2/3 barrel cortex for every large whisker on the rat's face, even peripheral whiskers; and (2) in the adult, neurons with similar directional tuning are interconnected by a network of horizontal connections, spanning distances of many whisker representations. We also propose specific experiments for testing the predictions of the model by manipulating patterns of whisker inputs experienced during early development. The results suggest that similar intracortical mechanisms guide the development of primate V1 and rat S1

    Learning Innate Face Preferences

    Full text link
    corecore