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Hebbian Learning of the Statistical and
Geometrical Structure of Visual Input

James A. Bednar

1 Abstract Experiments on the visual system of carnivorous mammals have re-
vealed complex relationships between the geometry and statistical properties of the
visual world, and the geometry and statistical properties of the primary visual cor-
tex. This review surveys an extensive body of modelling work that shows how a
relatively simple set of general-purpose neural mechanisms can account for a large
fraction of this observed relationship. The models consist of networks of simple
artificial neurons with initially unspecific connections that are modified by Heb-
bian learning and homeostatic plasticity. Given examples of internally generated or
visually evoked neural activity, this generic starting point develops into a realistic
match to observations from the primary visual cortex, without requiring any vision-
specific circuitry or neural properties. We show that the resulting network reflects
both the geometrical and statistical structure of the input, and develops under con-
straints provided by the geometrical structure of the cortical and subcortical regions
in the model. Specifically, the model neurons develop adult-like receptive fields and
topographic maps selective for all of the major local visual features, and realistic to-
pographically organized lateral connectivity that leads to systematic surround mod-
ulation effects depending on the geometry of both the visual input and the cortical
representations. Together these results suggest that sensory cortices self-organize to
capture the statistical properties of their inputs, revealing the underlying geometry
using relatively simple local rules that allow them to build useful representations of
the external environment.

James A. Bednar
Institute for Adaptive and Neural Computation, The University of Edinburgh, 10 Crichton St, EH8
9AB, Edinburgh, UK, e-mail: jbednar@inf.ed.ac.uk
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1 Introduction

Over the past half-century, experiments on the visual system of carnivorous mam-
mals have revealed complex relationships between the geometry and statistical prop-
erties of the visual world, and the geometry and statistical properties of the visual
cortex. For instance, an oriented line projected onto the back of the eye will evoke
responses in a topographically mapped region of the primary visual cortex (V1), but
in a discontinuous fashion grouped locally by orientation preference rather than
retinotopic location. Figure 1 illustrates this mapping for V1 in a tree shrew, a
primate-like species where the geometrical relationships are clearer because it lacks
the fovea/periphery distinctions common to humans and other primates. Figure 1
shows that tree shrew V1 is organized much like the retina, with location on the
retina mapping to corresponding locations in V1. But overlaid on this retinotopic
map is an orientation map [18], with different patches of V1 neurons responding
within the retinotopically mapped area, depending on the orientation of the input.

This patchy pattern of activity and orientation preference has been understood as
the result of a dimension-reduction process [22, 26, 45], wherein the many dimen-
sions in which a small patch of visual input could vary are mapped continuously
onto the two-dimensional surface of the cortex. If the cortex had as many geometri-
cal dimensions as the ways in which the input varied, this mapping could be straight-
forward. E.g. if the input varied only in retinal location (X ,Y ), a simple retinotopic
map onto the cortical surface would suffice. Instead, the various combinations of
retinotopic position and other features like orientation are flattened onto the cortical
surface in a way that achieves good coverage of the inputs while maintaining local
continuity [35, 45, 55]. Figure 2 illustrates this folding and flattening process for the
case of ocular dominance (OD), with a cortical ocular dominance pattern interpreted
as a two-dimensional view of preferences that cover a three-dimensional (X ,Y,OD)
space.

Cortical OR and OD maps illustrate geometric relationships between input and
output spaces, but the relationships also take statistics into account. Specifically, the
area of the cortical maps devoted to each feature value reflects the frequency of oc-
currence of that feature [50, 56]. Figure 3 shows examples of this phenomenon in cat
visual cortex, for kittens reared with special goggles that blur non-vertical patterns.
Similar effects occur for the OD map, when input from one eye is disrupted [59].
These results raise the possibility that the observed geometrical relationships could
at least in part be the result of an underlying process of adaptation to the statistics
of the input, where the input geometry constrains the possible input samples and the
cortex organizes around the patterns seen on its inputs [35, 45, 58].

Although the basic dimension-reduction and folding idea is now widespread, the
links between dimension reduction, input statistics, and the actual machinery and
circuits in the visual cortex remains obscure. This review surveys results from a
large family of closely related mechanistic models of V1 development, which show
how the observed map patterns can arise from plausible approximations to the mech-
anisms present in the subcortical visual pathways and in V1. Unlike other models of
the map patterns, the resulting systems can then process actual visual images, and
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Fig. 1 Retinotopic and orientation map in V1. Given a particular fixation point (marked
with a red + symbol above), the visual field seen by an animal can be divided into
a regular grid, with each square representing a 1◦×1◦ area of visual space. In corti-
cal area V1 of mammals, neurons are arranged into a retinotopic map, with nearby
neurons responding to nearby areas of the retina. As an example, the image on the
right shows the retinotopic map on the surface of V1 of a tree shrew for an 8◦×7◦

area of visual space (adapted from 21; scale bar is 1mm). A stimulus presented in
a particular location in visual space (such as the thick black bar shown) evokes a
response centered around the corresponding grid square in V1 (6◦,2◦). Which spe-
cific neurons respond within that general area, however, depends on the orientation
of the stimulus. The V1 map is color coded with the preferred orientation of neu-
rons in each location; e.g. the black bar shown at left will primarily activate neu-
rons colored in purple in the corresponding V1 grid squares. Similar maps could be
plotted for this same area showing preference for other visual features, such as mo-
tion direction, spatial frequency, color, disparity, and eye preference (depending on
species). Other cortical areas are arranged into topographic maps for other sensory
modalities, such as touch and audition, and for motor outputs.

can thus be used to relate the map patterns, connectivity within the underlying net-
works, and observed visual and physiological phenomena. The models suggest that
a wide and diverse range of observations about the visual cortex can be explained
by a small set of general-purpose mechanisms. These mechanisms are not specific
to vision, and should be applicable to most cortical regions.

Section 2 outlines the basic principles of these mechanistic models. Section 3)
presents an implementation of a simple GCAL (Gain Control, Adaptive, Laterally
connected) model [54], and describes both how it relates to earlier models on which
it is based, and how it relates to a more realistic but more complex variant that covers
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(a) Macaque OD map (b) Model preferences in (X ,Y,OD) (c) Model OD

Fig. 2 Retinotopic and ocular dominance maps. (a) Just as for orientation, eye preference (oc-
ular dominance; OD) is represented within the overall retinotopic map, with both of the possible
eye preferences represented near any particular cortical location (here visualized across the corti-
cal surface with black for one eye and white for the other eye); data for macaque V1 from Blasdel
[17]. This pattern can be understood as a 2D projection onto the cortical surface of an underlying
set of preferences in 3D: for X, Y, and ocular dominance. (b) shows the results of a self-organizing
map (SOM) model of this organization, visualizing the 3D preference of each neuron (model from
Ritter et al. 1991,1992; figure and data from Miikkulainen et al. [35]). The 2D sheet of neurons
has covered the 3D input space (delineated by the box outline) by folding in the third dimension,
such that every value of (X ,Y,OD) is well approximated by some neuron. The resulting pattern is
a type of Peano (space-filling) curve. (c) When the OD preference is plotted in grayscale for each
neuron in their cortical locations, projecting this 3D pattern space down to the 2D cortical space,
the resulting pattern is similar to animal OD maps, suggesting that animals do a similar process of
representing input spaces by folding in the non-retinotopic dimensions to fill a multidimensional
input space, and that cortical feature maps are the result.

(a) Normal cat (b) Goggle-reared cat

Fig. 3 Maps reflect input statistics. Comparison between orientation maps for (a) cats raised in a
normal environment and (b) cats reared wearing goggles that blur non-vertical orientations shows
that the distribution of orientation preferences reflects the input statistics. Thus the relationship
between input and output is not merely geometrical, but is based on the statistical structure of the
inputs.
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all the phenomena reported here. Section 4 surveys results from GCAL and related
models. Section 5 explores implications of the model, and areas for further work.

2 GCAL model overview

The models considered in this chapter are each based on the following biologically
grounded principles and mechanisms (description follows [9, 10]):

1. Single-compartment (point neuron) firing-rate (i.e., non-spiking) retinal ganglion
cell (RGC), lateral geniculate nucleus (LGN), and V1 model neurons (see figure
4),

2. Hardwired subcortical pathways to V1, including the main LGN or RGC cell
types that have been identified,

3. Initially roughly retinotopic topographic projections from the eye to the LGN
and from the LGN to V1, connecting corresponding areas of each region,

4. Initially roughly isotropic (i.e., radially uniform) local connectivity to and be-
tween neurons in layers in V1, connecting neurons non-specifically to their local
and more distant neighbors,

5. Natural images and spontaneous subcortical input activity patterns that lead to
V1 responses,

6. Hebbian (unsupervised activity-dependent) learning with normalization for synapses
on V1 neurons,

7. Homeostatic plasticity (whole-cell adaptation of excitability to keep the average
activity of each V1 neuron constant), and

8. Various modeller-determined parameters associated with each of these mecha-
nisms, eventually intended to be set through self-regulating mechanisms.

Properties and mechanisms not necessary to explain the phenomena considered in
this chapter, such as spiking, spike-timing dependent plasticity, detailed neuronal
morphology, feedback from higher areas, neuromodulation, reinforcement learning,
and supervised learning, have all been omitted, to clearly focus on the aspects of
the system most relevant to the observed phenomena. The overall hypothesis is that
much of the complex structure and properties observed in V1 emerges from inter-
actions between relatively simple but highly interconnected computing elements,
with connection strengths and patterns self-organizing in response to visual input
and other sources of neural activity. Through visual experience, the geometry and
statistical regularities of the visual world become encoded into the structure and con-
nectivity of the visual cortex, leading to a complex functional cortical architecture
that reflects the physical and statistical properties of the visual world.

At present, many of the results have been obtained independently in a wide va-
riety of separate projects performed with different collaborators at different times.
However, all of the models share the same underlying principles outlined above,
and all are implemented using the same simulator and a small number of underly-
ing components. See Bednar [9] for an overview of each of the different models
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ON

V1

OFF

Photoreceptors

Fig. 4 Basic GCAL model architecture.
In the simplest case, GCAL consists of a
grayscale matrix representing the photore-
ceptor input, a pair of neural sheets repre-
senting the ON-center and OFF-center path-
ways from the photoreceptors to V1, and a
single sheet representing V1. Each sheet is
drawn here with a sample activity pattern re-
sulting from one natural image patch. Each
projection between sheets is illustrated with
an oval showing the extent of the connection
field in that projection, with lines converg-
ing on the target of the projection. Lateral
projections, connecting neurons within each
sheet, are marked with dashed ovals. Pro-
jections from the photoreceptors to the ON
and OFF sheets, and within those sheets, are
hardwired to mimic a specific class of re-
sponse types found in the retina and LGN,
in this case monochromatic center-surround
neurons with a fixed spatial extent. Connec-
tions to and between V1 neurons adapt via
Hebbian learning, allowing initially unselec-
tive V1 neurons to exhibit the range of re-
sponse types seen experimentally, by differ-
entially weighting each of the subcortical in-
puts (from the ON and OFF sheets) and in-
puts from neighboring V1 neurons. Reprinted
from Bednar [10].

and how they fit together; here we present details for a simple but representative
model simulating the development of orientation preferences and orientation maps
for a single eye (figure 4), and describe a more complex but still incomplete “unified
model” [9] covering the other phenomena, so far published only in separate models
[4, 6, 9, 14, 41, 42].

The goal for each of these models is the same — to explain how a cortical net-
work can start from an initially undifferentiated state, to wire itself into a collection
of neurons that behave, at a first approximation, like those in V1. Because such
a model starts with no specializations (at the cortical level) specific to vision and
would organize very differently when given different inputs, it also represents a
general explanation for the development and function of any sensory or motor area
in the cortex.
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3 GCAL Architecture

All of the models whose results are presented here are implemented in the To-
pographica simulator, and are freely available along with the simulator from
www.topographica.org. Both the basic and unified models are described us-
ing the same equations shown below, previously presented in refs. [9, 54]. The
model is intended to represent the visual system of the macaque monkey, but re-
lies on data from studies of cats, ferrets, tree shrews, or other mammalian species
where clear results are not yet available from monkeys.

3.1 Sheets and projections

Each Topographica model consists of a set of sheets of neurons and projections
(sets of topographically mapped connections) between them. A model has sheets
representing the visual input (as a set of activations in photoreceptor cells), sheets
implementing the transformation from the photoreceptors to inputs driving V1 (ex-
pressed as a set of ON and OFF RGC/LGN cell activations), and sheets represent-
ing neurons in V1. The simple GCAL model (figure 4) has 4 such sheets, while the
complete unified model described in Bednar [9] has 29, each representing different
topographically organized populations of cells in a particular region.

Each sheet is implemented as a two-dimensional array of firing-rate neurons. The
Topographica simulator allows parameters for sheets and projections to be specified
in measurement units that are independent of the specific grid sizes used in a par-
ticular run of the simulation. To achieve this, Topographica sheets provide multiple
spatial coordinate systems, called sheet and matrix coordinates. Where possible,
parameters (e.g. sheet dimensions or connection radii) are expressed in sheet coor-
dinates, expressed as if the sheet were a continuous neural field rather than a finite
grid. In practice, of course, sheets are always simulated using some finite matrix of
units. Each sheet has a parameter called its density, which specifies how many units
(matrix elements) in the matrix correspond to a length of 1.0 in continuous sheet
coordinates, which allows conversion between sheet and matrix coordinates. When
sizes are scaled appropriately [11], results are independent of the density used, ex-
cept at very low densities or for simulations with complex cells, where complexity
increases with density [5]. Larger areas can be simulated easily [11], but require
more memory and simulation time.

A projection to an m×m sheet of neurons consists of m2 separate connection
fields, one per target neuron, each of which is a spatially localized set of connec-
tions from the neurons in one input sheet that are near the location corresponding
topographically to the target neuron. Figure 4 shows one sample connection field
(CF) for each projection, visualized as an oval of the corresponding radius on the
input sheet (drawn to scale), connected by a cone to the neuron on the target sheet
(if different). The connections and their weights determine the specific properties
of each neuron in the network, by differentially weighting inputs from neurons of
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different types and/or spatial locations. Each of the specific types of sheets and pro-
jections is described in the following sections.

3.2 Images and photoreceptor sheets

The basic GCAL model (figure 4) has one input sheet, representing responses of
photoreceptors of one cone class in one retina. The full unified GCAL model of all
the input dimensions includes six input sheets (three different cone types in each
eye; not shown here). For the full unified model, inputs were generated by choosing
one calibrated-color image randomly from a database of single calibrated images,
selecting a random patch within the image, a random direction of motion transla-
tion with a fixed speed (described in ref. [12]), and a random brightness difference
between the two eyes (described in ref. [35]). These modifications are intended as
a simple model of motion and eye differences, to allow development of direction
preference, ocular dominance, disparity, and color maps, until suitable full-motion
stereo calibrated-color video datasets of natural scenes are available. Simulated reti-
nal waves can also be used as inputs, to provide initial receptive-field and map struc-
ture before eye opening, but are not required for receptive-field or map development
in the model [13].

3.3 Subcortical sheets

The subcortical pathway from the photoreceptors to the LGN and then to V1 is rep-
resented as a set of hardwired subcortical cells with fixed connection fields (CFs)
that determine the response properties of each cell. These cells represent the com-
plete processing pathway to V1, including circuitry in the retina (including the reti-
nal ganglion cells), the optic nerve, the lateral geniculate nucleus, and the optic
radiations to V1. Because the focus of the model is to explain cortical develop-
ment given its thalamic input, the properties of these ON/OFF cells are kept fixed
throughout development, for simplicity and clarity of analysis.

Each distinct ON/OFF cell type is grouped into a separate sheet, each of which
contains a topographically organized set of cells with identical properties but re-
sponding to a different topographically mapped region of the retinal photoreceptor
input sheet. Figure 4 shows the two main different spatial response types used in
the GCAL models illustrated here, ON (with an excitatory center) and OFF (with an
excitatory surround). All of these cells have Difference-of-Gaussian (DoG) recep-
tive fields, and thus perform edge enhancement at a particular size scale. Additional
cell classes can easily be added as needed for spatial frequency (with multiple DoG
sizes) or color (with separate cone types for the center and surround Gaussians)
simulations.
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For the ON and OFF cells in the unified model, there are multiple copies with
different delays from the retina. These delays represent the different latencies in
the lagged vs. non-lagged cells found in cat LGN [48, 62], and allow V1 neurons to
become selective for the direction of motion. Many other sources of temporal delays
would also lead to direction preferences, but have not been tested specifically.

3.4 Cortical sheets

Unless otherwise stated, the simulations reported in this chapter use only a single
V1 sheet for simplicity, but in the full unified model, V1 is represented by multiple
cortical sheets representing different cell types and different V1 layers [4, 9]. In this
simplified version, cells make both excitatory and inhibitory connections (unlike
actual V1 neurons), and all cells receive direct input from LGN cells (unlike many
V1 neurons). Even so, the single-sheet V1 can demonstrate most of the phenomena
described above, except for complex cells (which can be obtained by adding a sep-
arate population of cells without direct thalamic input [5]) and contrast-dependent
surround modulation effects (which require separate populations of inhibitory and
excitatory cells [4, 34]).

The behavior of the cortical sheet is primarily determined by the projections
to and within it. Each of these projections is initially non-specific other than the
initial rough topography, and becomes selective only through the process of self-
organization (described below), which increases some connection weights at the
expense of others.

3.5 Activation

The model is simulated in a series of discrete time steps with step size δ t = 0.05
(roughly corresponding to 12.5 milliseconds of real time). At time 0.0, the first im-
age is drawn on the retina, and the activation of each unit in each sheet is updated for
the remaining 19 steps before time 1.0, when a new pattern is selected and drawn
on the retina (and similarly until the last input pattern is drawn at time 10,000).
Each image patch on the retina represents one visual fixation (for natural images) or
a snapshot of the relatively slowly changing spatial pattern of spontaneous activity
(such as the well-documented retinal waves [63]). Thus the training process con-
sists of a constant retinal activation, followed by recurrent processing at the LGN
and cortical levels. For one input pattern, assume that the input is drawn on the
photoreceptors at time t and the connection delay (constant for all projections) is
defined as 0.05. Then at t + 0.05 the ON and OFF cells compute their responses,
and at t + 0.010 the thalamic output is delivered to V1, where it similarly propa-
gates recurrently through the intracortical projections to the cortical sheet(s) every
0.05 time steps. A much smaller step size of δ t = 0.002 allows replication of the de-
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tailed time course of responses to individual patterns [53], but this relatively coarse
step size of 0.05 is more practical for simulations of long-term processes like neural
development.

Images are presented to the model by activating the retinal photoreceptor units.
The activation value Ψi,P of unit i in photoreceptor sheet P is given by the brightness
of that pixel in the training image.

For each model neuron in the other sheets, the activation value is computed
based on the combined activity contributions to that neuron from each of the sheet’s
incoming projections. The activity contribution from a projection is recalculated
whenever its input sheet activity changes, after the corresponding connection delay.
For each unit j in a target sheet and an incoming projection p from sheet sp, the
activity contribution is computed from activations in the corresponding connection
field Fjp. Fjp consists of the local neighborhood around j (for lateral connections),
or the local neighborhood of the topographically mapped location of j on sp (for a
projection from another sheet); see examples in figures 4. The activity contribution
C jp to j from projection p is then a dot product of the relevant input with the weights
in each connection field:

C jp(t +δ t) = ∑
i∈Fjp

ηi(t)ωi j,p (1)

where Xis is the activation of unit i on this projection’s input sheet sp, unit i is taken
from the connection field Fjp of unit j, and ωi j,p is the connection weight from i
to j in that projection. Across all projections, multiple direct connections between
the same pair of neurons are possible, but each projection p contains at most one
connection between i and j, denoted by ωi j,p.

For a given cortical unit j, the activity η j(t + δ t) is calculated from a rectified
weighted sum of the activity contributions C jp(t +δ t):

η jV (t +δ t) = f

(
∑
p

γpC jp(t +δ t)

)
(2)

where f is a half-wave rectifying function with a variable threshold point (θ ) de-
pendent on the average activity of the unit, as described in the next subsection, and
V denotes one of the cortical sheets.

Each γp is an arbitrary multiplier for the overall strength of connections in pro-
jection p. The γp values are set in the approximate range 0.5 to 3.0 for excitatory
projections and -0.5 to -3.0 for inhibitory projections. For afferent connections, the
γp value is chosen to map average V1 activation levels into the range 0 to 1.0 by
convention, for ease of interconnecting and analyzing multiple sheets. For lateral
and feedback connections, the γp values are then chosen to provide a balance be-
tween feedforward, lateral, and feedback drive, and between excitation and inhibi-
tion; these parameters are crucial for making the network operate in a useful regime.

ON/OFF neuron activity is computed similarly to equation 2, except to add divi-
sive normalization and to fix the threshold θ at zero:
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η jL(t +δ t) = f
(

∑p γpC jp(t +δ t)
γSC jS(t +δ t)+ k

)
(3)

where L stands for one of the ON/OFF sheets. Projection S here consists of a set of
isotropic Gaussian-shaped lateral inhibitory connections (see equation 6, evaluated
with u = 1), and p ranges over all the other projections to that sheet. k is a small
constant to make the output well-defined for weak inputs. The divisive inhibition
implements the contrast gain control mechanisms found in RGC and LGN neurons
[1, 4, 19, 28].

Each time the activity is computed using equation 2 or 3, the new activity values
are sent to each of the outgoing projections, where they arrive after the projection
delay. The process of activity computation then begins again, with a new contribu-
tion C computed as in equation 1, leading to new activation values by equation 2
or 3. Activity thus spreads recurrently throughout the network, and can change, die
out, or be strengthened, depending on the parameters.

With typical parameters that lead to realistic topographic map patterns, initially
blurry patterns of afferent-driven cortical activity are sharpened into well-defined
“activity bubbles” through locally cooperative and more distantly competitive lat-
eral interactions [35]. Nearby neurons are thus influenced to respond more similarly,
while more distant neurons receive net inhibition and thus learn to respond to differ-
ent input patterns. The competitive interactions “sparsify” the cortical response into
patches, in a process that can be compared to the explicit sparseness constraints in
non-mechanistic models [30, 39], while the local facilitatory interactions encourage
spatial locality so that smooth topographic maps will be developed.

As described in more detail below, the initially random weights to cortical neu-
rons are updated in response to each input pattern, via Hebbian learning. Because
the settling (sparsification) process typically leaves only small patches of the corti-
cal neurons responding strongly, those neurons will be the ones that learn the current
input pattern, while other nearby neurons will learn other input patterns, eventually
covering the complete range of typical input variation. Overall, through a combina-
tion of the network dynamics that achieve sparsification along with local similarity,
plus homeostatic adaptation that keeps neurons operating in a useful regime, plus
Hebbian learning that leads to feature preferences, the network will learn smooth,
topographic maps with good coverage of the space of input patterns, thereby de-
veloping into a functioning system for processing patterns of visual input without
explicit specification or top-down control of this process.

3.6 Homeostatic adaptation

For this model, the threshold for activation of each cortical neuron is a very im-
portant quantity, because it directly determines how much the neuron will fire in
response to a given input. Mammalian neurons appear to regulate such thresholds
automatically, a process known as homeostatic plasticity or homeostatic adaptation



12 James A. Bednar

[57] (where homeostatic means to keep similar and stable). To set the threshold au-
tomatically, each neural unit j in V1 calculates a smoothed exponential average of
its own activity (η j):

η j(t) = (1−β )η j(t)+βη j(t−1) (4)

The smoothing parameter (β = 0.999) determines the degree of smoothing in the
calculation of the average. η j is initialized to the target average V1 unit activity
(µ), which for all simulations is η jA(0) = µ = 0.024. The threshold is updated as
follows:

θ(t) = θ(t−1)+κ(η j(t)−µ) (5)

where κ = 0.0001 is the homeostatic learning rate. The effect of this scaling mech-
anism is to bring the average activity of each V1 unit closer to the specified target.
If the average activity of a V1 unit moves away from the target during training, the
threshold for activation is thus automatically raised or lowered in order to bring it
closer to the target.

3.7 Learning

Initial connection field weights are random within a two-dimensional Gaussian en-
velope. E.g., for a postsynaptic (target) neuron j located at sheet coordinate (0,0),
the weight ωi j,p from presynaptic unit i in projection p is:

ωi j,p =
1

Zω p
uexp

(
−x2 + y2

2σ2
p

)
(6)

where (x,y) is the sheet-coordinate location of the presynaptic neuron i, u is a scalar
value drawn from a uniform random distribution for the afferent and lateral in-
hibitory projections (p = A, I), σp determines the width of the Gaussian in sheet
coordinates, and Zω p is a constant normalizing term that ensures that the total of all
weights ωi j,p to neuron j in projection p is 1.0, where all afferent projections are
treated together as a single projection so that their sum total is 1.0. Weights for each
projection are only defined within a specific maximum circular radius rp; they are
considered zero outside that radius.

Once per input pattern (after activity has settled), each connection weight ωi j
from unit i to unit j is adjusted using a simple Hebbian learning rule. (Learning
could instead be performed at every simulation time step, but doing so would re-
quire significantly more computation time.) This rule results in connections that
reflect correlations between the presynaptic activity and the postsynaptic response.
Hebbian connection weight adjustment for unit j is dependent on the presynaptic
activity ηi, the post-synaptic response η j, and the Hebbian learning rate α:
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ωi j,p(t) =
ωi j,p(t−1)+αη jηi

∑k
(
ωk j,p(t−1)+αη jηk

) (7)

Unless it is constrained, Hebbian learning will lead to ever-increasing (and thus
unstable) values of the weights. The weights are constrained using divisive post-
synaptic weight normalization (denominator of equation 7), which is a simple and
well understood mechanism. All afferent connection weights from ON/OFF sheets
are normalized together in the model, which allows V1 neurons to become selec-
tive for any subset of the ON/OFF inputs. Weights are normalized separately for
each of the other projections, to ensure that Hebbian learning does not disrupt the
balance between feedforward drive, lateral and feedback excitation, and lateral and
feedback inhibition. Subtractive normalization with upper and lower bounds could
be used instead, but it would lead to binary weights [36, 37], which is not desirable
for a firing-rate model whose connections represent averages over multiple physical
connections. More biologically motivated homeostatic mechanisms for normaliza-
tion such as multiplicative synaptic scaling [57] or a sliding threshold for plasticity
[16] could be implemented instead, but these have not been tested so far.

Note that some of the results below use the earlier LISSOM model [35], which
follows the same equations but lacks gain control and homeostatic adaptation
(equivalent to setting γS = 0 and k = 1 in equation 3 and κ = 0 in equation 5).
Without these automatic mechanisms, LISSOM requires the modeller to set the in-
put strength and activation thresholds separately for each dataset and to adjust them
as learning progresses. As long as these values have been set appropriately, previous
LISSOM results can be treated equivalently to GCAL results, but GCAL is signifi-
cantly simpler to use and describe, while being more robust to changes in the input
distributions [54], so only GCAL is described here.

4 Results

In the following sections, we review a series of model results that account for
anatomical, electrophysiological, imaging, psychophysical, and behavioral results
from studies of experimental animals. Each of the results arises from the neural
architecture and self-organizing mechanisms outlined in the previous section, oper-
ating on the statistical properties of the inputs, which reflect geometrical properties
both of the world and of the visual system itself.

4.1 Maps and connection patterns

Figure 5 shows the pattern of orientation selectivity that emerges in the basic GCAL
model from figure 4, whose subcortical pathway consists of a single set of non-
lagged monochromatic ON and OFF LGN inputs for a single eye. This model ro-
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Fig. 5 Orientation maps trained on abstract stimuli (color figure). These plots show the ori-
entation preference measured for each model neuron before (top row, iteration 0) and after self-
organization (bottom row, iteration 10,000) based on artificially generated two-dimensional ori-
ented Gaussian patterns. Each neuron in the map is colored according to the orientation it prefers,
using color key (e). (a) The preferences are initially random (top). Through self-organization, the
network developed a smoothly varying orientation map (bottom). Apart from the overall retino-
topic mapping that was enforced at initialization, the map contains local geometric features found
in maps from experimental animals, such as pinwheels (two are circled in white in a and black in
b), linear zones (one is marked with a long white or black rectangle), and fractures (one between
green and blue/purple is marked with a white or black square). (b) Before self-organization, the
selectivity of each neuron for its (random) preferred orientation is very low (black in b, top). In
contrast, nearly all of the self-organized neurons are highly selective for orientation (white in b,
bottom). (c) Overlaying the orientation and selectivity plots shows that regions of lower selectivity
in the self-organized map tend to occur near pinwheel centers and along fractures. Histograms of
the number of neurons preferring each orientation are shown in (d), and are essentially flat because
the initial weight patterns were unbiased and subsequent training inputs represented all orienta-
tions equally. These plots show that LISSOM (with GCAL getting essentially identical results as
well; [54]) can develop realistic orientation maps through self-organization based on abstract input
patterns. Reprinted from Bednar [8].

bustly develops orientation maps, when given training inputs that have elongated
patterns. In the model, the maps emerge as the consequence of the series of activity
bubbles in response to each input pattern, which cause different regions of the cortex
to learn weights corresponding to different input patterns.

Over the course of development, initially unspecific connections thus become
selective for specific patterns of LGN activity, including particular orientations.
Hebbian learning ensures that each afferent connection field shown represents the
average pattern of LGN activity that has driven that neuron to a strong response;
each neuron prefers a different pattern at a specific location on the retinal surface.
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Preferences from the set of all V1 neurons form a smooth topographic map cover-
ing the range of orientations present in the input patterns, yielding an orientation
map similar to those from monkeys [18]. For instance, the map shows iso-feature
domains, pinwheel centers, fractures, saddle points, and linear zones, with a ring-
shaped Fourier transform. As in animals [49], orientation selectivity is preserved
over a very wide range of contrasts, due to the effect of lateral inhibitory connec-
tions in the LGN and in V1 that normalize responses to be relative to activation of
neighboring neurons rather than absolute levels of contrast [54].

Figure 6 shows that the specific map pattern observed is a consequence not of
the initial random weight patterns, but of the series of randomly chosen inputs over
time. The overall properties of each map will be the same for any inputs drawn from
the same distribution, but the specific map pattern depends crucially on the arbitrary
location and order of inputs received during self-organization. The overall type of
organization primarily emerges from geometric constraints on smoothly mapping
the range of values for the indicated feature, within a two-dimensional retinotopic
map [32, 35].

The map patterns are also affected by the relative amount by which each feature
varies in the input dataset, how often each feature appears, and other aspects of the
input image statistics [13]. For instance, orientation maps trained on natural image
inputs develop a preponderance of neurons with horizontal and vertical orientation
preferences, as seen in ferret maps and in natural images [13, 24]. Figure 7 shows
results from maps trained first on a model of spontaneous retinal activity (to account
for maps present at eye opening in ferrets and cats), and then on natural images from
different datasets. For natural image inputs, the map’s histogram of orientation pref-
erences will no longer be flat as it was for the artificial inputs in figure 5; instead
it reflects the statistics of orientations present in the image dataset. Figure 7 shows
that the model has successfully extracted the horizontal and vertical biases of natu-
ral image databases, developing many more horizontal-selective cells when trained
on images with a preponderance of horizons and other horizontal patterns. This in-
crease occurs within the context of the map already established at eye opening, with
areas responding to horizontal growing larger over time, as they are activated more
often than the neighboring stimuli that activate nearby regions. Figure 8 shows that
the histogram of orientation preferences obtained in response to close-up natural
images is a good match to that obtained for ferrets, which is intriguing because the
ferrets have presumably been raised in a laboratory environment different from the
forest and nature images used to train the model.

Figure 9 shows the color, motion direction, ocular dominance, spatial frequency,
and disparity preferences and maps that develop when appropriate information is
made available to V1 through additional ON/OFF sheets [6, 9, 41, 42]. As described
in the original source for each model, the model results for each dimension have
been evaluated against the available animal data, and capture the main aspects of
the feature value coverage and the spatial organization of the maps [35, 41]. The
maps simulated together (e.g. orientation and ocular dominance) also tend to inter-
sect at right angles, such that high-gradient regions in one map avoid high-gradient
regions in others [14]. Each neuron becomes selective for some portion of the mul-
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Fig. 6 Input stream determines map pattern (color figure). This figure shows that the self-
organized orientation map patterns (e.g. in figure 5) do not depend on the random initial values
of the weights. They are instead driven by the stream of input patterns presented during training.
Using a different stream of random numbers for the weights results in different initial orientation
maps (a and b), but has almost no effect on the final self-organized maps (compare g to h). In
(g-i), the lateral inhibitory connections of one sample neuron are outlined in white, and are not
affected by changing the weight stream. The final result is the same because lateral excitation
smooths out differences in the initial weight values, and leads to similar large-scale patterns of
activation at each iteration. (Compare maps d and e measured at iteration 100; the same large-
scale features are emerging in both maps despite locally different patterns of noise caused by the
different initial weights.) In contrast, changing the input stream produces very different early and
final map patterns (compare e to f and h to i), even when the initial weight patterns (and therefore
the initial orientation maps) are identical (b and c). Thus the input patterns are the crucial source
of variation, not the initial weights. Reprinted from Bednar [8].
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Fig. 7 Postnatal training makes orientation map match statistics of the environment (color
figure). Each row shows results from a network trained for 1000 iterations on a model of inter-
nally generated activity [13], then trained for 9000 further iterations using natural images [51] to
model postnatal visual experience. The orientation map plots (b-d) show selectivity as a brightness
level, so that the postnatal improvement in selectivity will be visible. (a) and (b) are the same in
each row. The top row shows the effect of postnatal training on natural images. With these im-
ages, more neurons become sensitive to horizontal and vertical contours, and the overall selectivity
increases. However, the overall map shape remains similar, as found in laboratory animals (23;
compare individual blobs between maps right to left or left to right). The postnatal changes when
trained on a different database consisting primarily of landscape images are similar but much more
pronounced. With these images, the network smoothly develops strong biases for vertical and hor-
izontal contours, within the pre-determined map shape. These results show that postnatal learning
can gradually adapt the prenatally developed map to match the statistics of an animal’s natural
environment, as shown in figure 3, while explaining how an orientation map can be present already
at eye opening. Reprinted from Bednar [8].

tidimensional feature space, and together they account for the variation across this
space that was seen during self-organization [14].

In animals, the only large-scale information available about neural properties is
from imaging techniques at the map level. In the model, it is possible to see what
connectivity patterns systematically lead to the observed map preferences. Figure 10
shows these connectivity patterns for a GCAL OR map simulation with simple and
complex cells, illustrating how the neurons achieve coverage of the various possible
input feature values. Lateral connections, in turn, store patterns of correlation be-
tween each neuron that represent larger-scale structure and correlations. Figure 11
shows the pattern of lateral connectivity for a neuron embedded in an orientation, oc-
ular dominance, and motion direction map. Because the lateral connections are also
modified by Hebbian learning, they represent correlations between neurons, and are
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0◦ 45◦ 90◦ 135◦ 180◦

(a) GCAL/LISSOM model
0◦ 45◦ 90◦ 135◦ 180◦

(b) Adult ferret

Fig. 8 Training on natural images gives matching orientation histograms. Looking more
closely at the histogram for the network trained postnatally on images of natural scenes [51] shows
that the resulting histograms are a close match to those found in adult ferret V1 (reprinted from 24;
copyright National Academy of Sciences, U.S.A.). The model and animals both model trained on
natural images have more neurons representing horizontal or vertical than oblique contours, which
reflects the statistics of the natural environment. However, the natural images were chosen specifi-
cally to exclude manmade contours, while the ferrets were raised in a laboratory environment that
presumably had many long edges and sharp corners, and so it may be surprising to find such a
close match for these images. Work is ongoing to identify the actual pattern of first and second or-
der statistics in natural and laboratory environments so that these results can be interpreted clearly.
Reprinted from Bednar [8].
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Fig. 9 Model maps for other feature dimensions. Imaging results for 4mm×4mm of model V1
from the LISSOM models of retinotopy (X,Y), orientation (OR), ocular dominance (OD), motion
direction (DR), spatial frequency (SF), temporal frequency (TF), disparity (DY), and color (CR).
For each spatial dimension (TF has not yet been analyzed), the model develops maps that are a
close match to the experimental results. All of the maps share a property of local smoothness, which
results from the short-range lateral connections in the model, but the overall patterns differ with
each feature depending on how those features varied during training for that simulation. Reprinted
from references indicated.
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(a) LGN ON→V1 L4 (b) LGN OFF→V1 L4

(c) V1 L2/3→V1 L2/3

(d) L2/3 OR domain

(e) L2/3 OR pinwheel
Fig. 10 Self-organized projections to V1 L2/3. Unlike purely geometric models where the maps
are represented directly in the model, the maps plotted in the previous figures are just summaries of
the properties conferred on neurons by their connectivity patterns. These plots show the underlying
connectivity patterns that lead to an orientation map, from a simulation with separate V1 L4 and
L2/3 regions allowing the emergence of complex cells. (a,b) Connection fields from the LGN
ON and OFF channels to every 20th neuron in the model L4 show that orientation preferences
are reflected in the afferent connectivity to the neurons in that area. (c) Long-range excitatory
lateral connections to those neurons preferentially come from neurons with similar OR preferences.
Here strong weights are colored with the OR preference of the source neuron. Strong weights
occur in clumps (appearing as small dots here) corresponding to an iso-orientation domain (each
approximately 0.2–0.3mm wide); the fact that most of the dots are similar in color for any given
neuron shows that the connections are orientation specific. Comparison of corresponding plots
from (c) and (a) or (b) shows that the OR preferences of the afferent and lateral CFs are very
similar. (d) Enlarged plot from (c) for a typical OR domain neuron that prefers horizontal patterns
and receives connections primarily from other horizontal-preferring neurons (appearing as blobs
of red or nearly red colors). (e) OR pinwheel neurons receive connections from neurons with many
different OR preferences, because they are less selective in their responses and thus correlated
with a wide range of orientation preferences. Overall, the lateral connectivity patterns reflect the
patterns of co-occurrence statistics of each pair of neurons over time, due to Hebbian learning;
these patterns then lead to phenomena such as orientation-specific surround modulation (figure 12).
Reprinted from Antolik [4].
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(a) OR+lateral [14] (b) OD+lateral [14] (c) DR+lateral [14] (d) Tree shrew; [20]

Fig. 11 Lateral connections across maps. LISSOM/GCAL neurons each participate in multiple
functional maps, but have only a single set of lateral connections. Connections are strongest from
other neurons with similar properties, respecting each of the maps to the degree to which that map
affects correlation between neurons. Maps for a combined LISSOM OR/OD/DR simulation are
shown above, with the black outlines indicating the connections to the central neuron (marked
with a small black square outline) that remain after weak connections have been pruned. Model
neurons receive connections from other model neurons with similar orientation preference (a) (as
in tree shrew, (d)) but connections even more strongly respect the direction map (c). This highly
monocular unit also connects strongly to the same eye (b), but the more typical binocular cells have
wider connection distributions. Reprinted from refs. [14, 20] as indicated.

thus strong for short-range connections (due to the shared retinotopic preference of
those neurons) and between other neurons often coactivated during self-organization
(e.g. those sharing orientation, direction, and eye preferences). The lateral connec-
tions are thus patchy and orientation and direction specific, as found in animals
[20, 47, 52]. Neurons with low levels of selectivity for any of those dimensions
(e.g. binocular neurons) receive connections from a wide range of feature prefer-
ences, while highly selective neurons receive more specific connections, reflecting
the different patterns of correlation in those cases. These connection patterns rep-
resent predictions, as only a few of these relationships have been tested so far in
animals. The model strongly predicts that lateral connection patterns will respect all
maps that account for a significant fraction of the response variance of the neurons,
because each of those features will affect the correlation between neurons.

Overall, where it has been possible to make comparisons, these models have
been shown to reproduce the main features of the experimental data, using a small
set of assumptions. In each case, the model demonstrates how the experimentally
measured map can emerge from Hebbian learning of corresponding patterns of sub-
cortical and cortical activity. The models thus illustrate how the same basic, general-
purpose adaptive mechanism will lead to very different organizations, depending on
the geometrical and statistical properties of that feature. Future work will focus on
showing how all the results so far could emerge simultaneously in a single model
(as outlined in ref. [9]).
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4.2 Surround modulation

Given a model with realistically patchy, specific lateral connectivity and realis-
tic single-neuron properties, as described above, the patterns of interaction be-
tween neurons can be compared with neurophysiological evidence for surround
modulation—influences on neural responses from distant patterns in the visual field.
These studies can help validate the underlying model circuit, while helping under-
stand how the visual cortex will respond to complicated patterns such as natural
images.

For instance, figure 12 shows how the response to a sine grating patch can be
modulated by a surrounding annulus. In animals, complicated patterns of interac-
tion with the surround are seen depending on orientation and contrast [31, 50]. The
model reproduces these patterns due to the orientation-specific self-organized lat-
eral connection patterns, accounting not only for the most commonly reported and
analyzed effects, but also a variety of other effects depending on the location of
the neuron in the map (which affects its pattern of lateral connectivity as shown
in figure 10). The model thus accounts both for the typical pattern of orientation
contrast interactions, and explains why such a diversity of patterns is observed in
animals. The results from these studies and related studies of size-dependent effects
[4] suggest both that lateral interactions may underlie many of the observed sur-
round modulation effects, and also that the diversity of observed effects can at least
in part be traced to the diversity of lateral connection patterns, which in turn is a
result of the various sequences of activations of the neurons during development.

Although the preceding results all focused on the primary visual cortex, the
mechanisms involved in these models are general purpose, based only on process-
ing statistical regularities in input patterns to reveal the underlying geometry and
properties of the external world. As a demonstration, figure 13 shows that the same
model can be applied to a completely non-visual input modality, rodent whiskers.
The same principle of activity-bubble formation due to local cooperation and more
distant competition leads to very different results for this type of input, with pin-
wheels that develop in a strictly aligned global organization, unlike the scattered
pinwheels seen in model V1 maps. But again the results are a good match to animal
data, suggesting that these general principles apply across the sensory cortex, and
potentially to other cortical and subcortical regions that process patterned stimuli.

5 Discussion and future work

The results reviewed above illustrate a general approach to understanding the large-
scale development, organization, and function of cortical areas, illustrating how the
geometry and statistics of the external inputs interact with the geometry and ar-
chitecture of the cortical architecture to determine the observed organization and
operation of the visual cortex. The models show that a relatively small number of
basic and largely uncontroversial assumptions and principles may be sufficient to
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Fig. 12 Orientation-contrast tuning curves (OCTCs). For the OR model whose connection
fields are shown in figure 10, the effect of the orientation-specific lateral connections can be tested
using center-surround annulus stimulus like the example at the bottom right. Here the center patch
is chosen to be a good match to the afferent RF of a specific V1 model neuron, and then responses
are collected as the orientation of the surround is varied. In each graph A-F reprinted from ref. [4],
red is the orientation tuning curve for the given neuron (with just the center grating patch), blue
is for surround contrast 50%, and green is for surround contrast 100%. Top row: typically (51%
of model neurons tested), a collinear surround is suppressive for these contrasts, but the surround
becomes less suppressive as the surround orientation is varied (as for cat [50], G and macaque [31],
H). Middle row: Other patterns seen in the model include high responses at diagonals (D, 20%, as
seen in ref. [50]), strongest suppression not collinear (E, as seen in ref. [31]), and facilitation for all
orientations (F, 5%). The relatively rare pattern in F has not been reported in existing studies, and
thus constitutes a prediction. In each case the observed variability is a consequence of the model’s
Hebbian learning that leads to a diversity of patterns of lateral connectivity, rather than noise or
experimental artifacts.

explain a very wide range of experimental results from the visual cortex. Even very
simple neural units, i.e., firing-rate point neurons, generically connected into topo-
graphic maps with initially random or isotropic weights, can form a wide range of
specific feature preferences and maps via unsupervised normalized Hebbian learn-
ing of natural images and spontaneous activity patterns. The resulting maps consist
of neurons with realistic spatial response properties, with variability due to visual
context and recent history that explains significant aspects of surround modulation.
Combining the existing models into a single, runnable visual system is very much
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(a) Whisker inputs (b) Barrel inputs (c) Direction map (d) Connections

(e) Time course of activation

Fig. 13 Rodent barrel cortex direction map. The V1 model in GCAL and LISSOM is com-
pletely general, and contains no vision-specific components or assumptions. As a demonstration,
this figure shows results from a GCAL-based model of the rat barrel cortex, which is a primary
sensory area driven by the thalamus, like V1, but with inputs ultimately from rodent whiskers in-
stead of photoreceptors (reprinted from Wilson et al. [60]). The model has a 5×5 array of whiskers
that can be deflected in any direction with different strengths; (a) shows a typical assumed pattern
of deflection, with whiskers deflected roughly in the direction perpendicular to a moving edge (e.g.
an obstacle encountered by the whiskers). The corresponding thalamic input to the barrel cortex is
shown in (b), computed using hard-wired cosine-shaped RFs analogous to the ON and OFF chan-
nels of the LGN; bright colors indicate high activation for a unit with that direction preference. The
cortical response to this pattern is initially broad (e), as for visual stimuli to model V1, but within
a few settling iterations converges into a stable pattern of activity bubbles. Due to the geometrical
arrangement of the activated whiskers, the bubbles reliably form on the leading edge of the activity
pattern, which causes an immediate and strong correlation between the input patterns and the neu-
rons that respond in barrel cortex. The result is the robust emergence of globally aligned pinwheel
patterns, one per whisker barrel (c), which is very different from the arbitrary pinwheel patterns
observed for V1 development. These patterns are a close match to experimental data from rats (2;
see small map next to (c), showing how the map pattern emerges from the geometrical arrange-
ment of the input stimuli and their receptors. Just as for the visual cortex models, the long-range
lateral connections come from neurons with similar direction preference, due to Hebbian learning;
see example for the neuron marked with a * in (d). For any modality, the model results reflect the
geometric and statistical properties of the input, subject to constraints from the initial wiring of the
cortex.

a work in progress, but the results so far suggest that doing so will be both feasible
and valuable. The simulator and example simulations are freely downloadable from
www.topographica.org, allowing any interested researcher to build on this
work.

It is important to note that many of the individual results found with GCAL can
also be obtained using other modelling approaches, which can be complementary to
the processes modeled by GCAL. For instance, it is possible to generate orientation
maps without any activity-dependent plasticity, through the initial wiring pattern
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between the retina and the cortex [40, 44] or within the cortex itself [29]. Such an
approach cannot explain subsequent experience-dependent development, whereas
the Hebbian approach of GCAL can explain both the initial map and later plasticity,
but it is of course possible that the initial map and the subsequent plasticity occur
via different mechanisms. Other models are based on abstractions of some of the
mechanisms in GCAL [27, 38, 61, 64], operating similarly but at a higher level.
GCAL is not meant as a competitor to such models, but as a concrete, physically
realizable implementation of those ideas.

As discussed throughout, the main focus of this modelling work has been on
replicating experimental data using a small number of computational primitives and
mechanisms, with a goal of providing a concise, concrete, and relatively simple
explanation for a wide and complex range of experimental findings. A complete ex-
planation of visual cortex development and function would go even further, demon-
strating more clearly why the cortex should be built in this way, and precisely what
information-processing purpose this circuit performs. For instance, realistic recep-
tive fields can be obtained from “normative” models embodying the idea that the
cortex is developing a set of basis functions to represent input patterns faithfully,
with only a few active neurons [15, 30, 39, 43], maps can emerge by minimizing
connection lengths in the cortex [33], and lateral connections can be modelled as
decorrelating the input patterns [7, 25]. The GCAL model can be seen as a concrete,
mechanistic implementation of these ideas, showing how a physically realizable lo-
cal circuit could develop receptive fields with good coverage of the input space, via
lateral interactions that also implement sparsification via decorrelation [35]. Making
more explicit links between mechanistic models like GCAL and normative theories
is an important goal for future work. Meanwhile, there are many aspects of corti-
cal function not explained by current normative models. The focus of the current
line of research is on first capturing those phenomena in a general-purpose mecha-
nistic model, so that researchers can then build deeper explanations for why these
computations are useful for the organism.

6 Conclusions

The GCAL model results suggest that it will soon be feasible to build a single model
visual system that will account for a very large fraction of the visual response prop-
erties, at the firing rate level, of V1 neurons in a particular species. Such a model will
help researchers make testable predictions to drive future experiments to understand
cortical processing, as well as determine which properties require more complex
approaches, such as feedback, attention, and detailed neural geometry and dynam-
ics. The model suggests that cortical neurons develop to cover the typical range of
variation in their thalamic inputs, within the context of a smooth, multidimensional
topographic map, and that lateral connections store pairwise correlations and use
this information to modulate responses to natural scenes, dynamically adapting to
both long-term and short-term visual input statistics.
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