1,789 research outputs found

    Extremely Red Objects in the Field of QSO 1213-0017: A Galaxy Concentration at z=1.31

    Get PDF
    We have discovered a concentration of extremely red objects (EROs; R-K>6) in the field of the z=2.69 quasar QSO 1213-0017 (UM 485), which is significantly overabundant compared to the field ERO surface density. The optical/near-IR colors of the EROs and numerous other red galaxies in this field are consistent with elliptical galaxies at z=1-2. HST optical images for a subset of galaxies show regular morphologies, most of them being disky or diffuse and without any obvious evidence for interactions. Ground-based IR images show similar morphologies, indicating any dust reddening in these objects is spatially uniform. Optical spectroscopy with the W. M. Keck Telescope has found that four of the red galaxies lie at =1.31, and a fifth lies in the foreground at z=1.20. Of the =1.31 galaxies, one is a reddened AGN while the remaining three have rest-frame UV absorption-line spectra characteristic of old (few Gyr) stellar populations, similar to the old red galaxy LBDS 53W091 at z=1.55. Including the MgII absorber seen in the QSO spectrum, we find five galaxies at =1.31 spread over 1.5 h_50^{-1} Mpc on the sky. These results suggest we have discovered a coherent structure of old galaxies at high-redshift, possibly associated with a massive galaxy cluster.Comment: 37 pages including 11 Postscript figures. To appear in the June 2000 issue of the Astronomical Journa

    NICMOS Snapshot Survey of Damped Lyman Alpha Quasars

    Full text link
    We image 19 quasars with 22 damped Lyman alpha (DLA) systems using the F160W filter and the Near-Infrared Camera and Multiobject Spectrograph aboard the Hubble Space Telescope, in both direct and coronagraphic modes. We reach 5 sigma detection limits of ~H=22 in the majority of our images. We compare our observations to the observed Lyman-break population of high-redshift galaxies, as well as Bruzual & Charlot evolutionary models of present-day galaxies redshifted to the distances of the absorption systems. We predict H magnitudes for our DLAs, assuming they are producing stars like an L* Lyman-break galaxy (LBG) at their redshift. Comparing these predictions to our sensitivity, we find that we should be able to detect a galaxy around 0.5-1.0 L* (LBG) for most of our observations. We find only one new possible candidate, that near LBQS0010-0012. This scarcity of candidates leads us to the conclusion that most DLA systems are not drawn from a normal LBG luminosity function nor a local galaxy luminosity function placed at these high redshifts.Comment: 31 pages, 8 figures, Accepted for Feb. 10 issue of Ap

    Faint AGN and the Ionizing Background

    Get PDF
    We determine the evolution of the faint, high-redshift, optical luminosity function (LF) of AGN implied by several observationally-motivated models of the ionizing background. Our results depend crucially on whether we use the total ionizing rate measured by the proximity effect technique or the lower determination from the flux decrement distribution of Ly alpha forest lines. Assuming a faint-end LF slope of 1.58 and the SDSS estimates of the bright-end slope and normalization, we find that the LF must break at M_B*=-24.2,-22.3, -20.8 at z=3,4, 5 if we adopt the lower ionization rate and assume no stellar contribution to the background. The break must occur at M_B*=-20.6,-18.7, -18.7 for the proximity effect background estimate. These values brighten by as much as ~2 mag if high-z galaxies contribute to the background with an escape fraction of ionizing photons consistent with recent estimates: f_e=0.16. By comparing to faint AGN searches, we find that the typically-quoted proximity effect estimates of the background imply an over-abundance of faint AGN (even with f_e=1). Even adopting the lower bound on proximity effect measurements, the stellar escape fraction must be high: f_e>0.2. Conversely, the lower flux- decrement-derived background requires a limited stellar contribution: f_e<0.05. Our derived LFs together with the locally-estimated black hole density suggest that the efficiency of converting mass to light in optically-unobscured AGN is somewhat lower than expected, <0.05. Comparison with similar estimates based on X-ray counts suggests that more than half of all AGN are obscured in the UV/optical. We also derive lower limits on typical AGN lifetimes and obtain >10^7 yrs for favored cases.Comment: 19 pages, 16 figures. Accepted by Astrophysical Journa

    CANDELS: The Contribution of the Observed Galaxy Population to Cosmic Reionization

    Get PDF
    We present measurements of the specific ultraviolet luminosity density from a sample of 483 galaxies at 6<z<8. These galaxies were selected from new deep near-infrared HST imaging from the CANDELS, HUDF09 and ERS programs. In contrast to the majority of previous analyses, which assume that the distribution of galaxy ultraviolet (UV) luminosities follows a Schechter distribution, and that the distribution continues to luminosities far below our observable limit, we investigate the contribution to reionization from galaxies which we can observe, free from these assumptions. We find that the observable population of galaxies can sustain a fully reionized IGM at z=6, if the average ionizing photon escape fraction (f_esc) is ~30%. A number of previous studies have measured UV luminosity densities at these redshifts that vary by 5X, with many concluding that galaxies could not complete reionization by z=6 unless a large population of galaxies fainter than the detection limit were invoked, or extremely high values of f_esc were present. The observed UV luminosity density from our observed galaxy samples at z=7-8 is not sufficient to maintain a fully reionized IGM unless f_esc>50%. Combining our observations with constraints on the emission rate of ionizing photons from Ly-alpha forest observations at z=6, we can constrain f_esc<34% (2-sigma) if the observed galaxies are the only contributors to reionization, or <13% (2-sigma) if the luminosity function extends to M_UV = -13. These escape fractions are sufficient to complete reionization by z=6. These constraints imply that the volume ionized fraction of the IGM becomes less than unity at z>7, consistent with a number of complementary reionization probes. If faint galaxies dominate reionization, future JWST observations will probe deep enough to see them, providing an indirect constraint on the ionizing photon escape fraction [abridged].Comment: 16 pages, 7 figures, Submitted to the Astrophysical Journa

    Binge flying: Behavioural addiction and climate change

    Get PDF
    Recent popular press suggests that ‘binge flying’ constitutes a new site of behavioural addiction. We theoretically appraise and empirically support this proposition through interviews with consumers in Norway and the United Kingdom conducted in 2009. Consistent findings from across two national contexts evidence a growing negative discourse towards frequent short-haul tourist air travel and illustrate strategies of guilt suppression and denial used to span a cognitive dissonance between the short-term personal benefits of tourism and the air travel’s associated long-term consequences for climate change. Tensions between tourism consumption and changing social norms towards acceptable flying practice exemplify how this social group is beginning to (re)frame what constitutes ‘excessive’ holiday flying, despite concomitantly continuing their own frequent air travels

    Ozone depletion, greenhouse gases, and climate change

    Get PDF
    This symposium was organized to study the unusual convergence of a number of observations, both short and long term that defy an integrated explanation. Of particular importance are surface temperature observations and observations of upper atmospheric temperatures, which have declined significantly in parts of the stratosphere. There has also been a dramatic decline in ozone concentration over Antarctica that was not predicted. Significant changes in precipitation that seem to be latitude dependent have occurred. There has been a threefold increase in methane in the last 100 years; this is a problem because a source does not appear to exist for methane of the right isotopic composition to explain the increase. These and other meteorological global climate changes are examined in detail

    Near-Infrared Properties of Faint X-rays Sources from NICMOS Imaging in the Chandra Deep Fields

    Full text link
    We measure the near-infrared properties of 42 X-ray detected sources from the Chandra Deep Fields North and South, the majority of which lie within the NICMOS Hubble Deep Field North and Ultra Deep Field. We detect all 42 Chandra sources with NICMOS, with 95% brighter than H = 24.5. We find that X-ray sources are most often in the brightest and most massive galaxies. Neither the X-ray fluxes nor hardness ratios of the sample show any correlation with near-infrared flux, color or morphology. This lack of correlation indicates there is little connection between the two emission mechanisms and is consistent with the near-infrared emission being dominated by starlight rather than a Seyfert non-stellar continuum. Near-infrared X-ray sources make up roughly half of all extremely red (J-H > 1.4) objects brighter than H > 24.5. These red X-ray sources have a range of hardness ratios similar to the rest of the sample, decreasing the likelihood of dust-obscured AGN activity as the sole explanation for their red color. Using a combination of spectroscopic and photometric redshifts, we find the red J-H objects are at high redshifts (z > 1.5), which we propose as the primary explanation for their extreme J-H color. Measurement of rest-wavelength absolute B magnitudes shows that X-ray sources are the brightest optical objects at all redshifts, which explains their dominance of the bright end of the red J-H population.Comment: 29 pages, 7 figures, accepted by Ap
    • 

    corecore