6,281 research outputs found

    Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds.

    Get PDF
    Temperature-dependent surface-enhanced Raman scattering (SERS) is used to investigate the photoluminescence and background continuum always present in SERS but whose origin remains controversial. Both the Stokes and anti-Stokes background is found to be dominated by inelastic light scattering (ILS) from the electrons in the noble metal nanostructures supporting the plasmon modes. The anti-Stokes background is highly temperature dependent and is shown to be related to the thermal occupation of electronic states within the metal via a simple model. This suggests new routes to enhance SERS sensitivities, as well as providing ubiquitous and calibrated real-time temperature measurements of nanostructures.The authors would like to thank EPSRC (EP/K028510/1, EP/ G060649/1, EP/H007024/1, EP/L027151/1), ERC LINASS 320503, EU CUBiHOLE, and Renishaw Diagnostics Ltd. for funding and samples.This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b00146

    Variation in nutrient resorption by desert shrubs

    Get PDF
    Plant nutrient resorption prior to leaf senescence is an important nutrient conservation mechanism for aridland plant species. However, little is known regarding the phylogenetic and environmental factors influencing this trait. Our objective was to compare nitrogen (N) and phosphorous (P) resorption in a suite of species in the Asteraceae and Chenopodiaceae and assess the impact of soil salinity on nitrogen resorption. Although asters and chenopods did not differ in N resorption proficiency, chenopods were more proficient than asters at resorbing P. Plant responses to salinity gradients were species-specific and likely related to different salt-tolerances of the species. During the three year study, precipitation varied 6.4- and 9.9-fold from the long term averages at our two desert sites; despite these differences, annual variation in nutrient resorption was not linked to annual precipitation. More detailed studies are required to understand the influence of salinity and precipitation on resorption. Understanding controls on this trait may give insight into how species will respond to anthropogenic soil salinization and desertification

    Psychometric properties of the revised teachers' attitude toward inclusion scale

    Get PDF
    This paper presents the psychometric properties of a questionnaire measure that updates and extends Larrivee and Cook's (1979) Opinions Relative to Mainstreaming Scale in terms of structure, terminology, and language. The revised scale was tested using a sample of 106 teachers based in inclusive mainstream schools. Using Principal Component Analysis, a four-factor structure was found for the “attitudes toward inclusion” section of the revised scale: (a) problems of inclusion of special educational needs (SEN) children in mainstream classes; (b) social benefits for all of the inclusion of SEN pupils in mainstream classes; (c) implications of inclusion for teaching practice; and (d) implications for addressing the needs of children with SEN. Moderate to good reliability was found for these components (Cronbach's α: .76–.86). In conclusion, the updated and revised Teachers' Attitude to Inclusion Scale (TAIS) shows promise of being a reliable and valid measure for both research and applied purposes

    Impacts of drought on plant water relations and nitrogen nutrition in dryland perennial grasses

    Get PDF
    Background and aims Extensive worldwide dryland degradation calls for identification of functional traits critical to dryland plant performance and restoration outcomes. Most trait examination has focused on drought tolerance, although most dryland systems are water and nutrient co-limited. We studied how drought impacts both plant water relations and nitrogen (N) nutrition. Methods We grew a suite of grasses common to the Intermountain West under both well-watered and drought conditions in the greenhouse. These grasses represented three congener pairs (Agropyron, Elymus, Festuca) differing in their habitat of origin (“wetter” or “drier”). We measured growth, water relations, N resorption efficiency and proficiency and photosynthetic N use efficiency in response to drought. Results Drought decreased growth and physiological function in the suite of grasses studied, including a negative impact on plant N resorption efficiency and proficiency. This effect on resorption increased over the course of the growing season. Evolutionary history constrained species responses to treatment, with genera varying in the magnitude of their response to drought conditions. Surprisingly, habitat of origin influenced few trait responses. Conclusions Drought impacted plant N conservation, although these responses also were constrained by evolutionary history. Future plant development programs should consider drought tolerance not only from the perspective of water relations but also plant mineral nutrition, taking into account the role of phylogeny

    TRAIT CONVERGENCE AND PLASTICITY AMONG NATIVE AND INVASIVE SPECIES IN RESOURCE-POOR ENVIRONMENTS

    Get PDF
    Premise of study: Functional trait comparisons provide a framework with which to assess invasion and invasion resistance. However, recent studies have found evidence for both trait convergence and divergence among coexisting dominant native and invasive species. Few studies have assessed how multiple stresses constrain trait values and plasticity, and no study has included direct measurements of nutrient conservation traits, which are critical to plants growing in low-resource environments. Methods: We evaluated how nutrient and water stresses affect growth and allocation, water potential and gas exchange, and nitrogen (N) allocation and use traits among a suite of six codominant species from the Intermountain West to determine trait values and plasticity. In the greenhouse, we grew our species under a full factorial combination of high and low N and water availability. We measured relative growth rate (RGR) and its components, total biomass, biomass allocation, midday water potential, photosynthetic rate, water-use effi ciency (WUE), green leaf N, senesced leaf N, total N pools, N productivity, and photosynthetic N use effi ciency. Key results: Overall, soil water availability constrained plant responses to N availability and was the major driver of plant trait variation in our analysis. Drought decreased plant biomass and RGR, limited N conservation, and led to increased WUE. For most traits, native and nonnative species were similarly plastic. Conclusions: Our data suggest native and invasive biomass dominants may converge on functionally similar traits and demonstrate comparable ability to respond to changes in resource availability

    Environmental stress and genetics influence night-time leaf conductance in the C4 grass Distichlis spicata

    Get PDF
    Growing awareness of night-time leaf conductance (gnight) in many species, as well as genetic variation in gnight within several species, has raised questions about how genetic variation and environmental stress interact to influence the magnitude of gnight. The objective of this study was to investigate how genotype salt tolerance and salinity stress affect gnight for saltgrass [Distichlis spicata (L.) Greene]. Across genotypes and treatments, night-time water loss rates were 5–20% of daytime rates. Despite growth declining 37–87% in the high salinity treatments (300 mM and 600 mM NaCl), neither treatment had any effect on gnight in four of the six genotypes compared with the control treatment (7 mM NaCl). Daytime leaf conductance (gday) also was not affected by salinity treatment in three of the six genotypes. There was no evidence that more salt tolerant genotypes (assessed as ability to maintain growth with increasing salinity) had a greater capacity to maintain gnight or gday at high salinity. In addition, gnight as a percentage of gday was unaffected by treatment in the three most salt tolerant genotypes. Although gnight in the 7 mM treatment was always highest or not different compared with the 300 mM and 600 mM treatments, gday was generally highest in the 300 mM treatment, indicating separate regulation of gnight and gday in response to an environmental stress. Thus, it is clear that genetics and environment both influence the magnitude of gnight for this species. Combined effects of genetic and environmental factors are likely to impact our interpretation of variation of gnight in natural populations

    The generalizability of survey experiments

    Get PDF
    Survey experiments have become a central methodology across the social sciences. Researchers can combine experiments’ causal power with the generalizability of population-based samples. Yet, due to the expense of population-based samples, much research relies on convenience samples (e.g., students, online opt-in samples). The emergence of affordable, but non-representative online samples has reinvigorated debates about the external validity of experiments. We conduct two studies of how experimental treatment effects obtained from convenience samples compare to effects produced by population samples. In Study 1, we compare effect estimates from four different types of convenience samples and a population-based sample. In Study 2, we analyze treatment effects obtained from 20 experiments implemented on a population-based sample and Amazon’s Mechanical Turk. The results reveal considerable similarity between many treatment effects obtained from convenience and nationally representative population-based samples. While the results thus bolster confidence in the utility of convenience samples, we conclude with guidance for the use of a multitude of samples for advancing scientific knowledge

    The Stellar Halos of Massive Elliptical Galaxies II: Detailed Abundance Ratios at Large Radius

    Full text link
    We study the radial dependence in stellar populations of 33 nearby early-type galaxies with central stellar velocity dispersions sigma* > 150 km/s. We measure stellar population properties in composite spectra, and use ratios of these composites to highlight the largest spectral changes as a function of radius. Based on stellar population modeling, the typical star at 2 R_e is old (~10 Gyr), relatively metal poor ([Fe/H] -0.5), and alpha-enhanced ([Mg/Fe]~0.3). The stars were made rapidly at z~1.5-2 in shallow potential wells. Declining radial gradients in [C/Fe], which follow [Fe/H], also arise from rapid star formation timescales due to declining carbon yields from low-metallicity massive stars. In contrast, [N/Fe] remains high at large radius. Stars at large radius have different abundance ratio patterns from stars in the center of any present-day galaxy, but are similar to Milky Way thick disk stars. Our observations are thus consistent with a picture in which the stellar outskirts are built up through minor mergers with disky galaxies whose star formation is truncated early (z~1.5-2).Comment: ApJ in press, 12 pages, 6 figure
    • …
    corecore