728 research outputs found

    Retailing and wholesaling of Christmas trees within selected areas, North Central region

    Get PDF

    Shelf water and chlorophyll export from the Hatteras slope and outer shelf

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 4291–4304, doi:10.1002/2014JC009809.Using high-resolution data acquired from a shipboard ADCP and a towed Scanfish equipped with a CTD and fluorometer, we examine the properties and transport of Middle Atlantic Bight (MAB) shelf water over a region of the Hatteras outer shelf and slope where MAB shelf water is commonly deflected offshore and entrained into the Gulf Stream. The data are from a period in early August 2004 when the seasonal pycnocline of the MAB is well developed and situated over a weakly stratified, near-bottom shelf water mass commonly referred to as the cold pool. Our data show chlorophyll-rich cold pool water carried rapidly southward over the slope and outer shelf, at a rate of up to 60 cm s−1, as part of the shelf-edge frontal jet. This southward transport of chlorophyll-rich cold pool water is shunted eastward and entrained into the Gulf Stream. However, the latitude band over which this export occurs varies significantly over the 7 day course of our study, a variation which is linked to an order 50 km shift in the latitude at which the Gulf Stream separates from the continental margin. The coupled rapid translation of the Gulf Stream frontal separation and the cold pool export zone is likely to have a significant impact on the movement and accumulation of biogenic material over the Hatteras slope and rise.This work was supported by the U.S. National Science Foundation through grants OCE-03–27249 and OCE-0926999

    Shelfbreak frontal eddies over the continental slope north of Cape Hatteras

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C02017, doi:10.1029/2007JC004642.Shelfbreak and slope eddies have been implicated as important agents in the exchange of water between the shelf and slope domains of the Middle Atlantic Bight (MAB). Here we present temperature, salinity, and velocity data from a series of shipboard transects that intercepted a rich eddy field over the slope of the southern MAB. Attention is focused on a well-sampled cyclonic eddy, of roughly 60-km diameter and 300-m depth, that translated southward at 0.1 m s−1. The eddy was composed of a mix of water masses including MAB shelf and slope water, Gulf Stream water, and water from the MAB shelfbreak front. Gradient Richardson numbers suggest that these water masses were subject to vigorous turbulent vertical mixing. The transport of shelfbreak frontal water contained within the eddy was substantial. In the upper 100 m, shelfbreak frontal water comprised ∌75% of the eddy's volume. This frontal water fraction moved southward with a transport of ∌0.4 Sv, comparable with the volume transport within the shelfbreak frontal jet. A number of factors indicate that this highly energetic eddy, with maximum azimuthal velocity of 0.7 m s−1, was generated through instability of the shelfbreak frontal jet. The eddy had apparently developed rapidly (in <3 days), consistent with models of eddy generation through baroclinic instability of the shelfbreak frontal jet. The eddy's potential temperature/salinity (Ξ/S) properties and energy density closely matched the Ξ/S properties and energy density found in the frontal jet to the north of the eddy.This work was supported by the U.S. National Science Foundation through grant OCE-03-27249

    Implementing tradable permits for sulfur oxides emissions : a case study in the South Coast Air Basin

    Get PDF
    Tradable emissions permits have important theoretical advantages over source-specific technical standards as a means for controlling pollution. Nonetheless, difficulties can arise in trying to implement an efficient, competitive market in emissions permits. Simple workable versions of the market concept may fail to achieve the competitive equilibrium, or to take account of important complexities in the relationship between the pattern of emissions and the geographical distribution of pollution. Existing regulatory law may severely limit the range of market opportunities that states can adopt. This report examines the feasibility of tradable permits for controlling particulate sulfates in the Los Angeles airshed. Although the empirical part of the paper deals with a specific case, the methods developed have general applicability. Moreover, the particular market design that is proposed -- an auction process that involves no net revenue collection by the state -- has attractive features as a general model

    A late quaternary pollen record from Cedarburg Bog, Wisconsin

    Get PDF
    Late Quaternary (from the last glaciation to present) forest history is inferred from the Cedarburg Bog fossil pollen record. Analysis of fossil pollen samples extend over 4 meters of continuous core recovered from near the center of the bog. The deepest and oldest of the fossil pollen assemblages (ca. 12,000 years ago) suggest open spruce woodlands unlike any in the contemporary boreal ecosystem. Pollen from the Pleistocene-Holocene transition (11,000 years ago) is marked by a number of abrupt changes in forest composition related to rapid climate change, species immigration, and progressive soils and ecosystem maturation. By 9,000 years ago most of the modern forest plant species were established. These mixed deciduous forests persisted until the historical deforestation

    Investigation of North American vegetation variability under recent climate: a study using the SSiB4/TRIFFID biophysical/dynamic vegetation model

    Get PDF
    PublishedJournal ArticleThis is the final version of the article. Available from AGU via the DOI in this record.Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60-years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980s. The effects of the severe drought during 1987-1992 and the last decade in the southwestern U.S. on vegetation are also evident from decreases in the simulated and satellite-derived LAIs. Both simulated and satellite-derived LAIs have the strongest correlations with air temperature at northern middle to high latitudes in spring reflecting the effect of these climatic variables on photosynthesis and phenological processes. Meanwhile, in southwestern dry lands, negative correlations appear due to the heat and moisture stress there during the summer. Furthermore, there are also positive correlations between soil wetness and LAI, which increases from spring to summer. The present study shows both the current improvements and remaining weaknesses in dynamical vegetation models. It also highlights large continental-scale variations that have occurred in NA vegetation over the past six decades and their potential relations to climate. With more observational data availability, more studies with different models and focusing on different regions will be possible and are necessary to achieve comprehensive understanding of the vegetation dynamics and climate interactions. Key Points Climate forcing and spatial and temporal variability of North American ecosystem Evaluate a 2-D biophysical model/dynamic vegetation using satellite data Mechanisms affecting vegetation/climate interactio

    High-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of NRC Research Press for personal use, not for redistribution. The definitive version was published in Canadian Journal of Fisheries and Aquatic Sciences 74 (2017): 240-255, doi:10.1139/cjfas-2015-0301.A dichotomy between depth penetration and resolution as a function of sonar frequency, draw resolution, and beam spread challenges fish target classification from sonar. Moving high-frequency sources to depth using autonomous underwater vehicles (AUVs) mitigates this and also co-locates transducers with other AUV-mounted short-range sensors to allow a holistic approach to ecological surveys. This widely available tool with a pedigree for bottom mapping is not commonly applied to fish reconnaissance and requires the development of an interpretation of pelagic reflective features, revisitation of count methods, image-processing rather than wave-form recognition for automation, and an understanding of bias. In a series of AUV mission test cases, side-scan sonar (600 and 900 kHz) returns often resolved individual school members, spacing, size, behavior, and (infrequently) species from anatomical features and could be intuitively classified by ecologists — but also produced artifacts. Fish often followed the AUV and thus were videographed, but in doing so removed themselves from the sonar aperture. AUV-supported high-frequency side-scan holds particular promise for survey of scarce, large species or for synergistic investigation of predators and their prey because the spatial scale of observations may be similar to those of predators.AUV missions were funded by an Office of Naval Research grant to the Woods Hole Oceanographic Institution and Rutgers University. The field work was supported by the Office of Naval Research under grant N00014-11-1-0160

    Impacts of ocean warming on acoustic propagation over continental shelf and slope regions

    Get PDF
    Author Posting. © The Oceanography Society, 2018. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 31(2), (2018):174–181, doi:10.5670/oceanog.2018.219.Gradients of heat and salt affect the propagation of sound energy in the ocean. Anticipated changes in oceanic conditions will alter thermohaline conditions globally, thus altering sound propagation. In this context, we examine changes in shallow- water propagation. Because these waters are close to the surface, they will be the earliest to change as the atmospheric state and radiative conditions change. We compare current and possible future propagation patterns near fronts and across fronts on continental shelves. Changes in sound pathways between the deep ocean and coastal regions are also examined, including an example from the Arctic Ocean.GG was supported by the Office of Naval Research under grants N00014-16-1-3071 and N00014-16-1-2774

    Shelfbreak frontal structure and processes north of Cape Hatteras in winter

    Get PDF
    Author Posting. © Sears Foundation for Marine Research, 2008. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 66 (2008): 755-799.The circulation north of Cape Hatteras is complicated by the proximity of the shelfbreak front, the Gulf Stream, and convergent shelf flow from the Middle and South Atlantic Bights. A three-week cruise in this region in January/February, 2005 was undertaken in order to study the structure of the shelfbreak front as it terminates near Cape Hatteras and to quantify the freshwater transport from the Middle Atlantic Bight shelf into the Gulf Stream. Two strongly contrasting conditions were identified. Early in the cruise, the Gulf Stream directly abutted the shelfbreak at Cape Hatteras and drove a northward flow over the continental shelf as far north as 35°45â€ČN. All of the Middle Atlantic Bight shelf water terminated by 35°30â€ČN. Ten days later, the Gulf Stream had moved away from the shelfbreak south of Cape Hatteras and strong winds from the north were present. During this time, the shelfbreak frontal jet was strong (maximum southward velocity of approximately 0.5 m s-1 with a Rossby number of 2) and abruptly turned eastward and offshore between 35°35â€ČN and 35°45â€ČN. Freshwater transport eastward from the shelfbreak jet was 7.4 mSv and southward over the shelf was 19.9 mSv, giving a total freshwater transport of 27.3 mSv. This likely represents an upper bound due to the strong wind forcing. Implications of these results for the freshwater budget of the Middle Atlantic Bight shelf, stability properties of the shelfbreak front in this region, and the formation of “Ford water” in the Gulf Stream are discussed.Support for the Rutgers satellite archive is provided by NSF, ONR and NOAA. This work was supported under NSF Grant Number OCE-0327249
    • 

    corecore