2 research outputs found

    Trichomonas infection in a community of free-ranging domestic and wild Columbiformes and Bonelli’s eagle (Aquila fasciata)

    Get PDF
    Trichomonas spgallinae. is a pathogen of conservation relevance, whose main maintenance hosts are Columbiformes, but spillover to avian predators has been described. The goal of this study was to characterize the epidemiology of Trichomonas spp. in a community of free-ranging domestic and wild Columbiformes and an endangered predator, Bonelli’s eagle Aquila fasciata. We surveyed 253 live-captured Rock doves, 16 nestling Bonelli’s eagles and 41 hunted Columbiformes. Oro-esophageal swabs were incubated in culture media and Trichomonas spp. isolated from Bonelli’s eagle (6.3%, CI95 1.1-28.3), Turtle dove Streptopelia turtur (56.3%, CI95 39.3-71.8), Wood pigeon Columba palumbus (83.3%, CI95 43.7-97.0) and Rock dove Columba livia (68.4%, CI95 62.4-73.8). Infected Rock doves showed significantly poorer body condition than uninfected ones (p=0.022). From a subset of 32 isolates, 18S and ITS1/5.8S/ITS2 rRNA genes were sequenced and Maximum-Likelihood trees inferred. Four ribotypes of Trichomonas spp. were identified. In this study area Trichomonas spp. seem to persists in a multi-host system involving several species of Columbiformes. Conservation actions aimed at increasing the availability of trophic resources for Bonelli’s eagles through Rock dove restocking should consider the risk of pathogen transmission and of introduction of alien strains

    Spatial and Temporal Variability in Migration of a Soaring Raptor Across Three Continents

    Get PDF
    International audienceDisentangling individual-and population-level variation in migratory movements is necessary for understanding migration at the species level. However, very few studies have analyzed these patterns across large portions of species' distributions. We compiled a large telemetry dataset on the globally endangered Egyptian Vulture Neophron percnopterus (94 individuals, 188 completed migratory journeys), tracked across ∼70% of the species' global range, to analyze spatial and temporal variability of migratory movements within and among individuals and populations. We found high migratory connectivity at large spatial scales (i.e., different subpopulations showed little overlap in wintering areas), but very diffuse migratory connectivity within subpopulations, with wintering ranges up to 4,000 km apart for birds breeding in the same region and each subpopulation visiting up to 28 countries (44 in total). Additionally, Egyptian Vultures exhibited a high level of variability at the subpopulation level and flexibility at the individual level in basic migration parameters. Subpopulations differed significantly in travel distance and straightness of migratory movements, while differences in migration speed and duration differed as much between seasons and among individuals within subpopulations as between subpopulations. The total distances of the migrations completed by individuals from the Balkans and Caucasus were up to twice as long and less direct than those in Western Europe, and consequently were longer in duration, despite faster migration speeds. These differences appear to be largely attributable to more numerous and wider geographic barriers (water bodies) along the eastern flyway. We also found that adult spring migrations to Western Europe and the Balkans were longer and slower than fall migrations. We encourage further research to assess the underlying mechanisms for these differences and the extent to which environmental change could affect Egyptian Vulture movement ecology and population trends
    corecore