3,603 research outputs found

    Synthesis and characterization of nickel(II) maltolate complexes containing ancillary bisphosphine ligands

    Get PDF
    Cationic nickel(II) complexes containing chelating O,O'-donor maltolate or ethyl maltolate ligands in conjunction with bidentate bisphosphine ligands Ph₂P(CH₂)nPPh₂ were prepared by a one-pot reaction starting from nickel(II) acetate, bisphosphine, maltol (or ethyl maltol), and trimethylamine, and isolated as their tetraphenylborate salts. An X-ray structure determination of [Ni(maltolate)(Ph₂PCH₂CH₂PPh₂)]BPh₄ shows that the maltolate ligand binds asymmetrically to the (slightly distorted) square-planar nickel(II) center. The simplicity of the synthetic method was extended to the synthesis of the known platinum(II) maltolate complex [Pt(maltolate)(PPh₃)₂]BPh₄ which was obtained in high purity

    Spin-dependent pump current and noise in an adiabatic quantum pump based on domain walls in a magnetic nanowire

    Full text link
    We study the pump current and noise properties in an adiabatically modulated magnetic nanowire with double domain walls (DW). The modulation is brought about by applying a slowly oscillating magnetic and electric fields with a controllable phase difference. The pumping mechanism resembles the case of the quantum dot pump with two-oscillating gates. The pump current, shot noise, and heat flow show peaks when the Fermi energy matches with the spin-split resonant levels localized between the DWs. The peak height of the pump current is an indicator for the lifetime of the spin-split quasistationary states between the DWs. For sharp DWs, the energy absorption from the oscillating fields results in side-band formations observable in the pump current. The pump noise carries information on the correlation properties between the nonequilibrium electrons and the quasi-holes created by the oscillating scatterer. The ratio between the pump shot noise and the heat flow serves as an indicator for quasi-particle correlation.Comment: 18 pages, 5 figure

    Improvement of the monochrome image hologram by using a random phase and increasing number of Samples

    Get PDF
    This paper present a study about effect of the random phase and expansion of the scale sampling factors to improve the monochrome image hologram and compared it with previous produced others. Matlab software is used to synthesize and reconstruction hologram

    Monochrome Image Hologram (MIH)

    Get PDF
    A new computer-generated optical element called a monochrome image hologram (MIH) is described. A real nonnegative function to represent the transmittance of a synthesized hologram is used. This technique uses the positions of the samples in the synthesized hologram to record the phase information of a complex wavefront. Synthesized hologram is displayed on laser printer and is recorded on a film. Finally the reconstruction process is done using computerized

    Melting of persistent double-stranded polymers

    Full text link
    Motivated by recent DNA-pulling experiments, we revisit the Poland-Scheraga model of melting a double-stranded polymer. We include distinct bending rigidities for both the double-stranded segments, and the single-stranded segments forming a bubble. There is also bending stiffness at the branch points between the two segment types. The transfer matrix technique for single persistent chains is generalized to describe the branching bubbles. Properties of spherical harmonics are then exploited in truncating and numerically solving the resulting transfer matrix. This allows efficient computation of phase diagrams and force-extension curves (isotherms). While the main focus is on exposition of the transfer matrix technique, we provide general arguments for a reentrant melting transition in stiff double strands. Our theoretical approach can also be extended to study polymers with bubbles of any number of strands, with potential applications to molecules such as collagen.Comment: 9 pages, 7 figure

    VALIDATED KINETIC SPECTROPHOTOMETRIC DETERMINATION OF PITAVASTATIN CALCIUM USING ACIDIC PERMANGANATE OXIDATION

    Get PDF
    Objective: Development and validation of a sensitive, indirect spectrophotometric kinetic method, based on oxidation-reduction reaction, using potassium permanganate, for the quantitative assay of pitavastatin calcium, a cardiovascular drug used for the treatment of hyperlipidemia. Methods: The developed spectrophotometric kinetic method is based on the ability of potassium permanganate to oxidize Pitavastatin, where, the drug solution is treated with a fixed concentration of permanganate in acidic medium, and after a specified time, the unreacted permanganate is measured at 525 nm. All variables affecting the color development have been investigated and the conditions were optimized. Different kinetic methods, including initial rate, rate constant, fixed time and fixed concentration, were applied for the determination Pitavastatin. Results: During the course of the reaction, the absorbance values, at 525 nm, related to KMnO4, decreased linearly with increasing the concentration of the drug. The reaction rate obeyed was found to be pseudo-first-order and the kinetic method used was the fixed-time method. The assay of PITA in the concentration range of 16-80 μg/ml, using the fixed time method was successfully determined with a correlation coefficient value of 0.9999. The applicability of the developed method was also demonstrated by the determination of pitavastatin in its pure form and in its pharmaceutical formulation, where, the effect of excipients has also been studied and found to have no effect. Conclusion: The developed indirect spectrophotometric kinetic method, using the fixed time method, was used for the determination of Pitavastatin in pharmaceutical tablets. This method was simple, accurate and easy to apply for routine assay and in quality control laboratories
    corecore