We study the pump current and noise properties in an adiabatically modulated
magnetic nanowire with double domain walls (DW). The modulation is brought
about by applying a slowly oscillating magnetic and electric fields with a
controllable phase difference. The pumping mechanism resembles the case of the
quantum dot pump with two-oscillating gates. The pump current, shot noise, and
heat flow show peaks when the Fermi energy matches with the spin-split resonant
levels localized between the DWs. The peak height of the pump current is an
indicator for the lifetime of the spin-split quasistationary states between the
DWs. For sharp DWs, the energy absorption from the oscillating fields results
in side-band formations observable in the pump current. The pump noise carries
information on the correlation properties between the nonequilibrium electrons
and the quasi-holes created by the oscillating scatterer. The ratio between the
pump shot noise and the heat flow serves as an indicator for quasi-particle
correlation.Comment: 18 pages, 5 figure