61 research outputs found

    Interactive Segmentation and Visualization of DTI Data Using a Hierarchical Watershed Representation

    Get PDF
    Magnetic resonance diffusion tensor imaging (DTI) measures diffusion of water molecules and is used to characterize orientation of white matter fibers and connectivity of neurological structures. Segmentation and visualization of DT images is challenging, because of low data quality and complexity of anatomical structures. In this paper, we propose an interactive segmentation approach, based on a hierarchical representation of the input DT image through a tree structure. The tree is obtained by successively merging watershed regions, based on the morphological waterfall approach, hence the name watershed tree. Region merging is done according to a combined similarity and homogeneity criterion. We introduce filters that work on the proposed tree representation, and that enable region-based attribute filtering of DTI data. Linked views between the visualizations of the simplified DT image and the tree enable a user to visually explore both data and tree at interactive rates. The coupling of filtering, semiautomatic segmentation by labeling nodes in the tree, and various interaction mechanisms support the segmentation task. Our method is robust against noise, which we demonstrate on synthetic and real DTI data

    The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances

    Get PDF
    In the last five years there have been a large number of new time series classification algorithms proposed in the literature. These algorithms have been evaluated on subsets of the 47 data sets in the University of California, Riverside time series classification archive. The archive has recently been expanded to 85 data sets, over half of which have been donated by researchers at the University of East Anglia. Aspects of previous evaluations have made comparisons between algorithms difficult. For example, several different programming languages have been used, experiments involved a single train/test split and some used normalised data whilst others did not. The relaunch of the archive provides a timely opportunity to thoroughly evaluate algorithms on a larger number of datasets. We have implemented 18 recently proposed algorithms in a common Java framework and compared them against two standard benchmark classifiers (and each other) by performing 100 resampling experiments on each of the 85 datasets. We use these results to test several hypotheses relating to whether the algorithms are significantly more accurate than the benchmarks and each other. Our results indicate that only 9 of these algorithms are significantly more accurate than both benchmarks and that one classifier, the Collective of Transformation Ensembles, is significantly more accurate than all of the others. All of our experiments and results are reproducible: we release all of our code, results and experimental details and we hope these experiments form the basis for more rigorous testing of new algorithms in the future

    Analysis and performance estimation of the Conjugate Gradient method on multiple GPUs

    No full text
    The Conjugate Gradient (CG) method is a widely-used iterative method for solving linear systems described by a (sparse) matrix. The method requires a large amount of Sparse-Matrix Vector (SpMV) multiplications, vector reductions and other vector operations to be performed. We present a number of mappings for the SpMV operation on modern programmable GPUs using the Block Compressed Sparse Row (BCSR) format. Further, we show that reordering matrix blocks substantially improves the performance of the SpMV operation, especially when small blocks are used, so that our method outperforms existing state-of-the-art approaches, in most cases. Finally, a thorough analysis of the performance of both SpMV and CG methods is performed, which allows us to model and estimate the expected maximum performance for a given (unseen) problem. Keywords: Conjugate Gradient method; Sparse-Matrix Vector multiplication; Block Compressed Sparse Row format; Performance analysis; Performance estimation; Multiple GPU
    corecore