36 research outputs found

    Insanity as a Defense to the Civil Fraud Penalty

    Get PDF
    Most neurological diseases are associated with chronic inflammation initiated by the activation of microglia, which produce cytotoxic and inflammatory factors. Signal transducers and activators of transcription (STATs) are potent regulators of gene expression but contribution of particular STAT to inflammatory gene expression and STAT-dependent transcriptional networks underlying brain inflammation need to be identified. In the present study, we investigated the genomic distribution of Stat binding sites and the role of Stats in the gene expression in lipopolysaccharide (LPS)-activated primary microglial cultures. Integration of chromatin immunoprecipitation-promoter microarray data and transcriptome data revealed novel Stat-target genes including Jmjd3, Ccl5, Ezr, Ifih1, Irf7, Uba7, and Pim1. While knockdown of individual Stat had little effect on the expression of tested genes, knockdown of both Stat1 and Stat3 inhibited the expression of Jmjd3 and inflammatory genes. Transcriptional regulation of Jmjd3 by Stat1 and Stat3 is a novel mechanism crucial for launching inflammatory responses in microglia. The effects of Jmjd3 on inflammatory gene expression were independent of its H3K27me3 demethylase activity. Forced expression of constitutively activated Stat1 and Stat3 induced the expression of Jmjd3, inflammation-related genes, and the production of proinflammatory cytokines as potently as lipopolysacharide. Gene set enrichment and gene function analysis revealed categories linked to the inflammatory response in LPS and Stat1C + Stat3C groups. We defined upstream pathways that activate STATs in response to LPS and demonstrated contribution of Tlr4 and Il-6 and interferon-. signaling. Our findings define novel direct transcriptional targets of Stat1 and Stat3 and highlight their contribution to inflammatory gene expression

    Enhancing European capabilities for application of multi-omics studies in biology and biomedicine space research

    Get PDF
    Following on from the NASA twins’ study, there has been a tremendous interest in the use of omics techniques in spaceflight. Individual space agencies, NASA’s GeneLab, JAXA's ibSLS, and the ESA-funded Space Omics Topical Team and the International Standards for Space Omics Processing (ISSOP) groups have established several initiatives to support this growth. Here, we present recommendations from the Space Omics Topical Team to promote standard application of space omics in Europe. We focus on four main themes: i) continued participation in and coordination with international omics endeavors, ii) strengthening of the European space omics infrastructure including workforce and facilities, iii) capitalizing on the emerging opportunities in the commercial space sector, and iv) capitalizing on the emerging opportunities in human subjects research

    Csf1 Deficiency Dysregulates Glial Responses to Demyelination and Disturbs CNS White Matter Remyelination

    No full text
    Remyelination, a highly efficient central nervous system (CNS) regenerative process, is performed by oligodendrocyte progenitor cells (OPCs), which are recruited to the demyelination sites and differentiate into mature oligodendrocytes to form a new myelin sheath. Microglia, the specialized CNS-resident phagocytes, were shown to support remyelination through secretion of factors stimulating OPC recruitment and differentiation, and their pharmacological depletion impaired remyelination. Macrophage colony-stimulating factor (Csf1) has been implicated in the control of recruitment and polarization of microglia/macrophages in injury-induced CNS inflammation. However, it remains unclear how Csf1 regulates a glial inflammatory response to demyelination as well as axonal survival and new myelin formation. Here, we have investigated the effects of the inherent Csf1 deficiency in a murine model of remyelination. We showed that remyelination was severely impaired in Csf1-/- mutant mice despite the fact that reduction in monocyte/microglia accumulation affects neither the number of OPCs recruited to the demyelinating lesion nor their differentiation. We identified a specific inflammatory gene expression signature and found aberrant astrocyte activation in Csf1-/- mice. We conclude that Csf1-dependent microglia activity is essential for supporting the equilibrium between microglia and astrocyte pro-inflammatory vs. regenerative activation, demyelinated axons integration and, ultimately, reconstruction of damaged white matter

    Identification of Pathway Deregulation – Gene Expression Based Analysis of Consistent Signal Transduction

    No full text
    <div><p>Signaling pathways belong to a complex system of communication that governs cellular processes. They represent signal transduction from an extracellular stimulus via a receptor to intracellular mediators, as well as intracellular interactions. Perturbations in signaling cascade often lead to detrimental changes in cell function and cause many diseases, including cancer. Identification of deregulated pathways may advance the understanding of complex diseases and lead to improvement of therapeutic strategies. We propose Analysis of Consistent Signal Transduction (ACST), a novel method for analysis of signaling pathways. Our method incorporates information regarding pathway topology, as well as data on the position of every gene in each pathway. To preserve gene-gene interactions we use a subject-sampling permutation model to assess the significance of pathway perturbations. We applied our approach to nine independent datasets of global gene expression profiling. The results of ACST, as well as three other methods used to analyze signaling pathways, are presented in the context of biological significance and repeatability among similar, yet independent, datasets. We demonstrate the usefulness of using information of pathway structure as well as genes’ functions in the analysis of signaling pathways. We also show that ACST leads to biologically meaningful results and high repeatability.</p></div

    EGFR/FOXO3a/BIM signaling pathway determines chemosensitivity of BMP4-differentiated glioma stem cells to temozolomide

    No full text
    Brain cancer: Stem cell properties may determine chemotherapy success The properties of individual glioma stem cells (GSCs) may influence the success of chemotherapy in tackling aggressive brain cancer. GSCs promote tumor growth and chemotherapy resistance in glioblastoma tumors. One potential treatment approach uses bone morphogenetic proteins to induce GSCs to differentiate into less harmful cells. Once the GSC population has dwindled, chemoresistance reduces in many but not all cases. Jakub Mieczkowski, Bozena Kaminska and co-workers at the Nencki Institute of Experimental Biology in Warsaw, Poland, conducted experiments on patient-derived glioblastoma cell cultures. They found that samples with high expression levels of the epidermal growth factor receptor (EGFR) protein in GSCs showed heightened sensitivity to the chemotherapy drug temozolomide after differentiation. Conversely, low levels of EGFR resulted in chemoresistance being maintained after differentiation, which may explain the failure of chemotherapy in some patients

    ACST results on Breast Cancer.

    No full text
    <p>ACST results on Breast Cancer.</p

    ACST results on four colorectal cancer datasets.

    No full text
    <p>ACST results on four colorectal cancer datasets.</p
    corecore