26 research outputs found

    A Powerful Optimization Tool for Analog Integrated Circuits Design

    Get PDF
    This paper presents a new optimization tool for analog circuit design. Proposed tool is based on the robust version of the differential evolution optimization method. Corners of technology, temperature, voltage and current supplies are taken into account during the optimization. That ensures robust resulting circuits. Those circuits usually do not need any schematic change and are ready for the layout.. The newly developed tool is implemented directly to the Cadence design environment to achieve very short setup time of the optimization task. The design automation procedure was enhanced by optimization watchdog feature. It was created to control optimization progress and moreover to reduce the search space to produce better design in shorter time. The optimization algorithm presented in this paper was successfully tested on several design examples

    Design and Fabrication of 3D Electrostatic Energy Harvester

    Get PDF
    This paper discusses the design of an electrostatic generator, power supply component of the self-powered microsystem, which is able to provide enough energy to power smart sensor chains or if necessary also other electronic monitoring devices. One of the requirements for this analyzer is the mobility, so designing the power supply expects use of an alternative way of getting electricity to power the device, rather than rely on periodic supply of external energy in the form of charging batteries, etc. In this case the most suitable method to use is so-called energy harvesting – a way how to gather energy. This uses the principle of non-electric conversion of energy into electrical energy in the form of converters. The present study describes the topology design of such structures of electrostatic generator. Structure is designed and modeled as a three-dimensional silicon based MEMS. Innovative approach involving the achievement of very low resonant frequency of the structure, while the minimum area of the chip, the ability to work in all 3 axes of coordinate system and ability to be tuned to reach desired parameters proves promising directions of possible further development of this issue. The work includes simulation of electro-mechanical and electrical properties of the structure, description of its behavior in different operating modes and phases of activity. Simulation results were compared with measured values of the produced prototype chip. These results can suggest possible modifications to the proposed structure for further optimization and application environment adaptation

    Design and Modeling of Micromechanical GaAs based Hot Plate for Gas Sensors

    Get PDF
    For modern Gas sensors, high sensitivity and low power are expected. This paper discusses design, simulation and fabrication of new Micromachined Thermal Converters (MTCs) based on GaAs developed for Gas sensors. Metal oxide gas sensors generally work in high temperature mode that is required for chemical reactions to be performed between molecules of the specified gas and the surface of sensing material. There is a low power consumption required to obtain the operation temperatures in the range of 200 to 500 oC. High thermal isolation of these devices solves consumption problem and can be made by designing of free standing micromechanical hot plates. Mechanical stability and a fast thermal response are especially significant parameters that can not be neglected. These characteristics can be achieved with new concept of GaAs thermal converter.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    High Power Solid State Retrofit Lamp Thermal Characterization and Modeling

    Get PDF
    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED lamp are presented in this paper. Paramount importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D thermal lamp model for further thermal optimization. Simulations are performed with ANSYS and CoventorWare software tools to compere different simulation approaches. Simulated thermal distribution has been validated with thermal measurement on a commercial 8W LED lamp. Materials parametric study has been carried out to discover problematic parts for heat transfer from power LEDs to ambient and future solutions are proposed. The objectives are to predict the thermal management by simulation of LED lamp, get more understanding in the effect of lamp shape and used materials in order to design more effective LED lamps and predict light quality, life time and reliability

    An Effect of Output Capacitor ESL on Hysteretic PLL Controlled Multiphase Buck Converter

    Get PDF
    This paper provides analysis of output capacitor effects to phase stability of a hysteretic mode controlled buck converter. The hysteretic control method is a simple and fast control technique for switched-mode converters, but the hysteresis control is not oscillator referenced. It results in difficulty to achieve stable switching phase and frequency. In recent papers, the authors propose a use of phase locked loops (PLL) to permit interleaved multiphase operation where each voltage regulator (VR) module is coupled together via output node and leads to a strong loop interaction. In this work analysis of this interaction is studied by Matlab Simulink simulations and a new solution how to partially suppress this effect is given. The proposed method confirms the theoretical analysis

    Estratègies de disseny de bombetes LED d'alta lluminositat i baix cost, compatibles amb casquet E27

    Get PDF
    Avui en dia, l'ús de LEDs com a font de llum ofereix una solució més sostenible i eficient comparat amb altres tipus d'il·luminació. Tanmateix, l'eficiència de la bombeta ve limitada per l'eficiència de l'electrònica necessària per alimentar els LEDS i els elements òptics necessaris per obtenir llum blanca. Per tant, encara es genera una gran quantitat de pèrdues en forma de calor. En aquest treball doncs, s'han estudiat diverses estratègies per al disseny tèrmic d'una nova bombeta amb el clàssic casquet de rosca E27 i amb una alta capacitat lumínica, aconseguint uns resultats prometedors

    High power solid state retrofit lamp thermal characterization and modeling

    No full text
    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D thermal lamp model for further thermal optimization. Simulations are performed with ANSYS and Covent or Ware software tools to compare different simulation approaches. Modeled thermal distribution has been validated with thermal measurement on a commercial 8W LED lamp. Materials parametric study has been carried out to discover problematic parts for heat transfer from power LEDs to ambient and future solutions are proposed. The objectives are to predict the thermal management by modeling of LED Lamp, get more understanding in the effect of lamp shape and used materials in order to design more effective LED lamps and predict light quality, life time and reliability

    A True Random Number Generator with Time Multiplexed Sources of Randomness

    Get PDF
    A true random number generator (TRNG) with time multiplexed metastability-based sources of randomness, presented in this paper, is capable of generating random bit sequences formed from noise present in the electronic circuit. An incorporated time multiplexer interleaves digitized random signals coming from sources of randomness and increases output data rate. The proposed TRNGwas fabricated in a STMicroelectronics 130 nm bulk CMOS technology on an area of 0.029mm2. The quality of all random bit sequences has been verified by the FIPS and NIST statistical test suites. The fabricated TRNG generates random bit sequences up to the data rate of 20 Mb/s without any corrective mechanisms at power consumption of 72.48 uW. The changing environmental conditions do not influence the quality of random bit sequences
    corecore