847 research outputs found

    Spectral statistics of random geometric graphs

    Get PDF
    We use random matrix theory to study the spectrum of random geometric graphs, a fundamental model of spatial networks. Considering ensembles of random geometric graphs we look at short range correlations in the level spacings of the spectrum via the nearest neighbour and next nearest neighbour spacing distribution and long range correlations via the spectral rigidity Delta_3 statistic. These correlations in the level spacings give information about localisation of eigenvectors, level of community structure and the level of randomness within the networks. We find a parameter dependent transition between Poisson and Gaussian orthogonal ensemble statistics. That is the spectral statistics of spatial random geometric graphs fits the universality of random matrix theory found in other models such as Erdos-Renyi, Barabasi-Albert and Watts-Strogatz random graph.Comment: 19 pages, 6 figures. Substantially updated from previous versio

    Trial of Remote Continuous versus Intermittent NEWS monitoring after major surgery (TRaCINg): protocol for a feasibility randomised controlled trial

    Get PDF
    Background: Despite medical advances, major surgery remains high risk. Up to 44% of patients experience postoperative complications, which can have huge impacts for patients and the healthcare system. Early recognition of postoperative complications is crucial in reducing morbidity and preventing long-term disability. The current standard of care is intermittent manual vital signs monitoring, but new wearable remote monitors offer the benefits of continuous vital signs monitoring without limiting the patient’s mobility. The aim of this study is to evaluate the feasibility, acceptability and clinical impacts of continuous remote monitoring after major surgery. Methods: The study is a randomised, controlled, unblinded, parallel group, feasibility trial. Adult patients undergoing elective major surgery will be invited to participate if they have the capacity to provided informed, written consent and do not have a cardiac pacemaker or an allergy to adhesives. Participants will be randomly assigned to receive continuous remote monitoring and normal National Early Warning Score (NEWS) monitoring (intervention group) or normal NEWS monitoring alone (control group). Continuous remote monitoring will be achieved using the SensiumVitals® wireless patch which is worn on the patient’s chest and monitors heart rate, respiratory rate and temperature continuously and alerts the nurse when there is deviation from pre-set physiological norms. Participants will be followed up throughout their hospital admission and for 30 days after discharge. Feasibility will be assessed by evaluating recruitment rate, adherence to protocol and randomisation, and the amount of missing data. The acceptability of the patch to nursing staff and patients will be assessed using questionnaires and interviews. Clinical outcomes will include time to antibiotics in cases of sepsis, length of hospital stay, number of critical care admissions and rate of readmission within 30 days of discharge. Discussion: Early detection and treatment of complications minimises the need for critical care, improves patient outcomes, and produces significant cost savings for the healthcare system. Remote continuous monitoring systems have the potential to allow earlier detection of complications, but evidence from the literature is mixed. Demonstrating significant benefit over intermittent monitoring to offset the practical and economic implications of continuous monitoring requires well-controlled studies in high-risk populations to demonstrate significant differences in clinical outcomes; this feasibility trial seeks to provide evidence of how best to conduct such a confirmatory trial. Trial registration: This study is listed on the ISRCTN registry with study ID ISRCTN16601772

    On the rate of quantum ergodicity in Euclidean billiards

    Full text link
    For a large class of quantized ergodic flows the quantum ergodicity theorem due to Shnirelman, Zelditch, Colin de Verdi\`ere and others states that almost all eigenfunctions become equidistributed in the semiclassical limit. In this work we first give a short introduction to the formulation of the quantum ergodicity theorem for general observables in terms of pseudodifferential operators and show that it is equivalent to the semiclassical eigenfunction hypothesis for the Wigner function in the case of ergodic systems. Of great importance is the rate by which the quantum mechanical expectation values of an observable tend to their mean value. This is studied numerically for three Euclidean billiards (stadium, cosine and cardioid billiard) using up to 6000 eigenfunctions. We find that in configuration space the rate of quantum ergodicity is strongly influenced by localized eigenfunctions like bouncing ball modes or scarred eigenfunctions. We give a detailed discussion and explanation of these effects using a simple but powerful model. For the rate of quantum ergodicity in momentum space we observe a slower decay. We also study the suitably normalized fluctuations of the expectation values around their mean, and find good agreement with a Gaussian distribution.Comment: 40 pages, LaTeX2e. This version does not contain any figures. A version with all figures can be obtained from http://www.physik.uni-ulm.de/theo/qc/ (File: http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp97-8.ps.gz) In case of any problems contact Arnd B\"acker (e-mail: [email protected]) or Roman Schubert (e-mail: [email protected]

    Transverse instability for non-normal parameters

    Full text link
    We consider the behaviour of attractors near invariant subspaces on varying a parameter that does not preserve the dynamics in the invariant subspace but is otherwise generic, in a smooth dynamical system. We refer to such a parameter as ``non-normal''. If there is chaos in the invariant subspace that is not structurally stable, this has the effect of ``blurring out'' blowout bifurcations over a range of parameter values that we show can have positive measure in parameter space. Associated with such blowout bifurcations are bifurcations to attractors displaying a new type of intermittency that is phenomenologically similar to on-off intermittency, but where the intersection of the attractor by the invariant subspace is larger than a minimal attractor. The presence of distinct repelling and attracting invariant sets leads us to refer to this as ``in-out'' intermittency. Such behaviour cannot appear in systems where the transverse dynamics is a skew product over the system on the invariant subspace. We characterise in-out intermittency in terms of its structure in phase space and in terms of invariants of the dynamics obtained from a Markov model of the attractor. This model predicts a scaling of the length of laminar phases that is similar to that for on-off intermittency but which has some differences.Comment: 15 figures, submitted to Nonlinearity, the full paper available at http://www.maths.qmw.ac.uk/~eo

    Semiclassical measures and the Schroedinger flow on Riemannian manifolds

    Full text link
    In this article we study limits of Wigner distributions (the so-called semiclassical measures) corresponding to sequences of solutions to the semiclassical Schroedinger equation at times scales αh\alpha_{h} tending to infinity as the semiclassical parameter hh tends to zero (when αh=1/h\alpha _{h}=1/h this is equivalent to consider solutions to the non-semiclassical Schreodinger equation). Some general results are presented, among which a weak version of Egorov's theorem that holds in this setting. A complete characterization is given for the Euclidean space and Zoll manifolds (that is, manifolds with periodic geodesic flow) via averaging formulae relating the semiclassical measures corresponding to the evolution to those of the initial states. The case of the flat torus is also addressed; it is shown that non-classical behavior may occur when energy concentrates on resonant frequencies. Moreover, we present an example showing that the semiclassical measures associated to a sequence of states no longer determines those of their evolutions. Finally, some results concerning the equation with a potential are presented.Comment: 18 pages; Theorems 1,2 extendend to deal with arbitrary time-scales; references adde

    From limit cycles to strange attractors

    Full text link
    We define a quantitative notion of shear for limit cycles of flows. We prove that strange attractors and SRB measures emerge when systems exhibiting limit cycles with sufficient shear are subjected to periodic pulsatile drives. The strange attractors possess a number of precisely-defined dynamical properties that together imply chaos that is both sustained in time and physically observable.Comment: 27 page

    Large deviations for non-uniformly expanding maps

    Full text link
    We obtain large deviation results for non-uniformly expanding maps with non-flat singularities or criticalities and for partially hyperbolic non-uniformly expanding attracting sets. That is, given a continuous function we consider its space average with respect to a physical measure and compare this with the time averages along orbits of the map, showing that the Lebesgue measure of the set of points whose time averages stay away from the space average decays to zero exponentially fast with the number of iterates involved. As easy by-products we deduce escape rates from subsets of the basins of physical measures for these types of maps. The rates of decay are naturally related to the metric entropy and pressure function of the system with respect to a family of equilibrium states. The corrections added to the published version of this text appear in bold; see last section for a list of changesComment: 36 pages, 1 figure. After many PhD students and colleagues having pointed several errors in the statements and proofs, this is a correction to published article answering those comments. List of main changes in a new last sectio

    China and the crisis : global power, domestic caution and local initiative

    Get PDF
    Even though the global crisis had a quick and dramatic impact on Chinese exports, the Chinese government responded with a range of policy responses that have helped maintain high rates of growth. This success has helped propel China to the centre of global politics, accelerating what many perceive to be a power shift from the West to China. But these gains were achieved by reversing policy in previous years designed to make a fundamental shift in China‟s mode of development, and have highlighted the problems associated with making such a transition. At the moment that many are looking at the Chinese "model" as a potential alternative to the Washington Consensus, one of the consequences of the crisis is to further question the long term efficacy of this "model" in China itself

    Classical and quantum ergodicity on orbifolds

    Full text link
    We extend to orbifolds classical results on quantum ergodicity due to Shnirelman, Colin de Verdi\`ere and Zelditch, proving that, for any positive, first-order self-adjoint elliptic pseudodifferential operator P on a compact orbifold X with positive principal symbol p, ergodicity of the Hamiltonian flow of p implies quantum ergodicity for the operator P. We also prove ergodicity of the geodesic flow on a compact Riemannian orbifold of negative sectional curvature.Comment: 14 page

    Trace Formulae and Spectral Statistics for Discrete Laplacians on Regular Graphs (I)

    Full text link
    Trace formulae for d-regular graphs are derived and used to express the spectral density in terms of the periodic walks on the graphs under consideration. The trace formulae depend on a parameter w which can be tuned continuously to assign different weights to different periodic orbit contributions. At the special value w=1, the only periodic orbits which contribute are the non back- scattering orbits, and the smooth part in the trace formula coincides with the Kesten-McKay expression. As w deviates from unity, non vanishing weights are assigned to the periodic walks with back-scatter, and the smooth part is modified in a consistent way. The trace formulae presented here are the tools to be used in the second paper in this sequence, for showing the connection between the spectral properties of d-regular graphs and the theory of random matrices.Comment: 22 pages, 3 figure
    corecore