5,616 research outputs found

    Investigation of the shear-mechanical and dielectric relaxation processes in two mono-alcohols close to the glass transition

    Get PDF
    Shear-mechanical and dielectric measurements on the two monohydroxy (mono-alcohol) molecular glass formers 2-ethyl-1-hexanol and 2-butanol close to the glass transition temperature are presented. The shear-mechanical data are obtained using the piezoelectric shear-modulus gauge method covering frequencies from 1mHz to 10kHz. The shear-mechanical relaxation spectra show two processes, which follow the typical scenario of a structural (alpha) relaxation and an additional (Johari-Goldstein) beta relaxation. The dielectric relaxation spectra are dominated by a Debye-type peak with an additional non-Debye peak visible. This Debye-type relaxation is a common feature peculiar to mono-alcohols. The time scale of the non-Debye dielectric relaxation process is shown to correspond to the mechanical structural (alpha) relaxation. Glass-transition temperatures and fragilities are reported based on the mechanical alpha relaxation and the dielectric Debye-type process, showing that the two glass-transition temperatures differ by approximately 10K and that the fragility based on the Debye-type process is a factor of two smaller than the structural fragility. If a mechanical signature of the Debye-type relaxation exists in these liquids, its relaxation strength is at most 1% and 3% of the full relaxation strength of 2-butanol and 2-ethyl-1-hexanol respectively. These findings support the notion that it is the non-Debye dielectric relaxation process that corresponds to the structural alpha relaxation in the liquid.Comment: 8 pages, 6 figures. Minor corrections, updated figures, more dielectric data show

    Photonic crystal fiber with a hybrid honeycomb cladding

    Full text link
    We consider an air-silica honeycomb lattice and demonstrate a new approach to the formation of a core defect. Typically, a high or low-index core is formed by adding a high-index region or an additional air-hole (or other low-index material) to the lattice, but here we discuss how a core defect can be formed by manipulating the cladding region rather than the core region itself. Germanium-doping of the honeycomb lattice has recently been suggested for the formation of a photonic band-gap guiding silica-core and here we experimentally demonstrate how an index-guiding silica-core can be formed by fluorine-doping of the honeycomb lattice.Comment: 5 pages including 3 figures. Accepted for Optics Expres

    Approximate square-root-time relaxation in glass-forming liquids

    Get PDF
    We present data for the dielectric relaxation of 43 glass-forming organic liquids, showing that the primary (alpha) relaxation is often close to square-root-time relaxation. The better an inverse power-law description of the high-frequency loss applies, the more accurately is square-root-time relaxation obeyed. These findings suggest that square-root-time relaxation is generic to the alpha process, once a common view, but since long believed to be incorrect. Only liquids with very large dielectric losses deviate from this picture by having consistently narrower loss peaks. As a further challenge to the prevailing opinion, we find that liquids with accurate square-root-time relaxation cover a wide range of fragilities

    X-ray diffraction microscopy based on refractive optics

    Get PDF
    A formalism is presented for dark-field X-ray microscopy using refractive optics. The new technique can produce three-dimensional maps of lattice orientation and axial strain within millimetre-sized sampling volumes and is particularly suited toin situstudies of materials at hard X-ray energies. An objective lens in the diffracted beam magnifies the image and acts as a very efficient filter in reciprocal space, enabling the imaging of individual domains of interest with a resolution of 100 nm. Analytical expressions for optical parameters such as numerical aperture, vignetting, and the resolution in both direct and reciprocal spaces are provided. It is shown that the resolution function in reciprocal space can be highly anisotropic and varies as a function of position in the field of view. Inserting a square aperture in front of the objective lens facilitates disjunct and space-filling sampling, which is key for three-dimensional reconstruction and analysis procedures based on the conservation of integrated intensity. A procedure for strain scanning is presented. Finally the formalism is validated experimentally at an X-ray energy of 17 keV.</jats:p

    Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports

    Get PDF
    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m.Comment: 9 pages including 5 figure

    Supercooled Liquid Dynamics Studied via Shear-Mechanical Spectroscopy

    Full text link
    We report dynamical shear-modulus measurements for five glass-forming liquids (pentaphenyl trimethyl trisiloxane, diethyl phthalate, dibutyl phthalate, 1,2-propanediol, and m-touluidine). The shear-mechanical spectra are obtained by the piezoelectric shear-modulus gauge (PSG) method. This technique allows one to measure the shear modulus (105101010^{5} -10^{10} Pa) of the liquid within a frequency range from 1 mHz to 10 kHz. We analyze the frequency-dependent response functions to investigate whether time-temperature superposition (TTS) is obeyed. We also study the shear-modulus loss-peak position and its high-frequency part. It has been suggested that when TTS applies, the high-frequency side of the imaginary part of the dielectric response decreases like a power law of the frequency with an exponent -1/2. This conjecture is analyzed on the basis of the shear mechanical data. We find that TTS is obeyed for pentaphenyl trimethyl trisiloxane and in 1,2-propanediol while in the remaining liquids evidence of a mechanical β\beta process is found. Although the the high-frequency power law behavior ωα\omega^{-\alpha} of the shear-loss may approach a limiting value of α=0.5\alpha=0.5 when lowering the temperature, we find that the exponent lies systematically above this value (around 0.4). For the two liquids without beta relaxation (pentaphenyl trimethyl trisiloxane and 1,2-propanediol) we also test the shoving model prediction, according to which the the relaxation-time activation energy is proportional to the instantaneous shear modulus. We find that the data are well described by this model.Comment: 7 pages, 6 figure

    A Concept for an STJ-based Spectrograph

    Full text link
    We describe a multi-order spectrograph concept suitable for 8m-class telescopes, using the intrinsic spectral resolution of Superconducting Tunneling Junction detectors to sort the spectral orders. The spectrograph works at low orders, 1-5 or 1-6, and provides spectral coverage with a resolving power of R~8000 from the atmospheric cutoff at 320 nm to the long wavelength end of the infrared H or K band at 1800 nm or 2400 nm. We calculate that the spectrograph would provide substantial throughput and wavelength coverage, together with high time resolution and sufficient dynamic range. The concept uses currently available technology, or technologies with short development horizons, restricting the spatial sampling to two linear arrays; however an upgrade path to provide more spatial sampling is identified. All of the other challenging aspects of the concept - the cryogenics, thermal baffling and magnetic field biasing - are identified as being feasible.Comment: Accepted in Monthly Notices of the Royal Astronomical Society, 12 pages with 10 figure
    corecore