198 research outputs found

    Quantum Hypothesis Testing and Non-Equilibrium Statistical Mechanics

    Full text link
    We extend the mathematical theory of quantum hypothesis testing to the general W∗W^*-algebraic setting and explore its relation with recent developments in non-equilibrium quantum statistical mechanics. In particular, we relate the large deviation principle for the full counting statistics of entropy flow to quantum hypothesis testing of the arrow of time.Comment: 60 page

    A new numerical approach to Anderson (de)localization

    Full text link
    We develop a new approach for the Anderson localization problem. The implementation of this method yields strong numerical evidence leading to a (surprising to many) conjecture: The two dimensional discrete random Schroedinger operator with small disorder allows states that are dynamically delocalized with positive probability. This approach is based on a recent result by Abakumov-Liaw-Poltoratski which is rooted in the study of spectral behavior under rank-one perturbations, and states that every non-zero vector is almost surely cyclic for the singular part of the operator. The numerical work presented is rather simplistic compared to other numerical approaches in the field. Further, this method eliminates effects due to boundary conditions. While we carried out the numerical experiment almost exclusively in the case of the two dimensional discrete random Schroedinger operator, we include the setup for the general class of Anderson models called Anderson-type Hamiltonians. We track the location of the energy when a wave packet initially located at the origin is evolved according to the discrete random Schroedinger operator. This method does not provide new insight on the energy regimes for which diffusion occurs.Comment: 15 pages, 8 figure

    Identification of deep trap levels from thermally stimulated current spectra of semi-insulating CdZnTe detector material

    Get PDF
    Deep trap levels in the semi-insulating (SI) CdZnTe detector material were characterized by simultaneous multiple peak analysis based on thermally stimulated current (TSC) measurements. In our TSCs that have been published previously electron hole pairs were created through the use of proton beam irradiation. Charge carriers were captured in deep traps and afterward released by thermal emission, which was recorded in the 90–300 K range. We showed that the obtained TSC spectra could be well fitted with a unique set of 14 different deep traps, which were all simultaneously and completely characterized. The obtained trap data are in good accordance with earlier deep trap characterizations of the other authors obtained on similar SI CdZnTe materials using different methods

    A note on the Landauer principle in quantum statistical mechanics

    Full text link
    The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than kTlog2kTlog 2. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauer's bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared

    'Return to equilibrium' for weakly coupled quantum systems: a simple polymer expansion

    Full text link
    Recently, several authors studied small quantum systems weakly coupled to free boson or fermion fields at positive temperature. All the approaches we are aware of employ complex deformations of Liouvillians or Mourre theory (the infinitesimal version of the former). We present an approach based on polymer expansions of statistical mechanics. Despite the fact that our approach is elementary, our results are slightly sharper than those contained in the literature up to now. We show that, whenever the small quantum system is known to admit a Markov approximation (Pauli master equation \emph{aka} Lindblad equation) in the weak coupling limit, and the Markov approximation is exponentially mixing, then the weakly coupled system approaches a unique invariant state that is perturbatively close to its Markov approximation.Comment: 23 pages, v2-->v3: Revised version: The explanatory section 1.7 has changed and Section 3.2 has been made more explici

    Entropic Fluctuations in Statistical Mechanics I. Classical Dynamical Systems

    Get PDF
    Within the abstract framework of dynamical system theory we describe a general approach to the Transient (or Evans-Searles) and Steady State (or Gallavotti-Cohen) Fluctuation Theorems of non-equilibrium statistical mechanics. Our main objective is to display the minimal, model independent mathematical structure at work behind fluctuation theorems. Besides its conceptual simplicity, another advantage of our approach is its natural extension to quantum statistical mechanics which will be presented in a companion paper. We shall discuss several examples including thermostated systems, open Hamiltonian systems, chaotic homeomorphisms of compact metric spaces and Anosov diffeomorphisms.Comment: 72 pages, revised version 12/10/2010, to be published in Nonlinearit

    Nonequilibrium Steady States and Fano-Kondo Resonances in an AB Ring with a Quantum Dot

    Full text link
    Electron transport through a strongly correlated quantum dot (QD) embedded in an Aharonov-Bohm (AB) ring is investigated with the aid of the finite-U slave-boson mean-field (SBMF) approach extended to nonequilibrium regime. A nonequilibrium steady state (NESS) of the mean-field Hamiltonian is constructed with the aid of the C*-algebraic approach for studying infinitely extended systems. In the linear response regime, the Fano-Kondo resonances and AB oscillations of the conductance obtained from the SBMF approach are in good agreement with those from the numerical renormalization group technique (NRG) by Hofstetter et al. by using twice larger Coulomb interaction. At zero temperature and finite bias voltage, the resonance peaks of the differential conductance tend to split into two. At low bias voltage, the split of the asymmetric resonance can be observed as an increase of the conductance plateau. We also found that the differential conductance has zero-bias maximum or minimum depending on the background transmission via direct tunneling between the electrodes.Comment: 24 pages,17 figure

    Simplicity of eigenvalues in Anderson-type models

    Full text link
    We show almost sure simplicity of eigenvalues for several models of Anderson-type random Schr\"odinger operators, extending methods introduced by Simon for the discrete Anderson model. These methods work throughout the spectrum and are not restricted to the localization regime. We establish general criteria for the simplicity of eigenvalues which can be interpreted as separately excluding the absence of local and global symmetries, respectively. The criteria are applied to Anderson models with matrix-valued potential as well as with single-site potentials supported on a finite box.Comment: 20 page

    Quantum correlations and distinguishability of quantum states

    Full text link
    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.Comment: Review article, 103 pages, to appear in J. Math. Phys. 55 (special issue: non-equilibrium statistical mechanics, 2014

    The existence problem for dynamics of dissipative systems in quantum probability

    Full text link
    Motivated by existence problems for dissipative systems arising naturally in lattice models from quantum statistical mechanics, we consider the following C∗C^{\ast}-algebraic setting: A given hermitian dissipative mapping δ\delta is densely defined in a unital C∗C^{\ast}-algebra A\mathfrak{A}. The identity element in A{\frak A} is also in the domain of δ\delta. Completely dissipative maps δ\delta are defined by the requirement that the induced maps, (aij)→(δ(aij))(a_{ij})\to (\delta (a_{ij})), are dissipative on the nn by nn complex matrices over A{\frak A} for all nn. We establish the existence of different types of maximal extensions of completely dissipative maps. If the enveloping von Neumann algebra of A{\frak A} is injective, we show the existence of an extension of δ\delta which is the infinitesimal generator of a quantum dynamical semigroup of completely positive maps in the von Neumann algebra. If δ\delta is a given well-behaved *-derivation, then we show that each of the maps δ\delta and −δ-\delta is completely dissipative.Comment: 24 pages, LaTeX/REVTeX v. 4.0, submitted to J. Math. Phys.; PACS 02., 02.10.Hh, 02.30.Tb, 03.65.-w, 05.30.-
    • …
    corecore