84 research outputs found

    Morphological and Biochemical Characterization of Different Oyster Mushroom (Pleurotus spp.)

    Get PDF
    Mushrooms have medicinal as well as nutritive value and extensively used as human food from the time immortal. In order to determine the genetic diversity among Pleurotus species of mushroom using morphological and random amplified polymorphic DNA (RAPD) markers, about seven different species were collected. Out of the seven, five species, naming Pleurotus citriopileatus, Pleurotus djamor, Pleurotus Florida, H. ulmarius and Pleurotus sajor-caju were selected. Five different morphological traits i.e., mycelial growth (mm), stipe length(cm), cap diameter (cm), margin of fruit body, colour of fruit body, total yield (kg), carbohydrate content(%) and protein content (%) were recorded. Results indicate that all the five species of Pleurotus shows great diversity in their morphological characters and biochemical parameters. Thus all these species have a great genetic diversity

    Effect of Salt on the Production of Xylanase in some Thermophilic Fungi

    Get PDF
    The fungal isolates was studied for the production of xylanase at different salt level i.e., 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0%. Xylanase was produced by growing the test fungus in Bhat and Maheshwari medium supplemented with 1% xylan as carbon source at pH 6.0. All the fungal isolates showed an increase in their xylanase activity with the increase in salt concentration upto a limit, thereafter it decreased. Chaetomium thermophile (1.21 U/mg protein), Humicola insolens (2.69 U/mg protein), Rhizopus stolonifer (1.25 U/mg protein) showed their highest activity at 1.5% salt level, while Humicola fuscoatra (1.25 U/mg protein), Humicola grisea (1.29 U/mg protein), Sporotrichum thermophile (1.19 U/mg protein) showed the highest activity at 2% salt level. Mucor sp (2.79 U/mg Protein) exhibited the highest activity at lower salt level (1%). Thermoascus aurantiacus (1.26 U/mg Protein) showed the double salt optima for xylanase activity, one at 1.5% and the other at 2.5% salt level

    DNA Methylation: A Stabilizing and Regulatory Mechanism of Plant Genome

    Get PDF
    The immobile lifestyle of plants requires responses to adapt the environmental stress. Flexible epigenetic regulations are essential for reprogramming of plant gene expression. The overall phenotype and gene expression profile of an organism is controlled by mechanisms other than the normal mechanism of expression. DNA methylation is one of them which control many important cellular functions, such as transposon silencing, genome stability, cell identity maintenance and defense against exogenous DNAs. DNA methylation maintained by a set of enzymes named DNA (cytosine-5-)-methyltransferases (DCMTases). In this paper, types, importance, mechanism, maintenance, and impact of DNA methylation on plant genome expression and transposition have been discussed. Methods to detect DNA methylation and CpG islands in plants genome has also been explored

    Global Systems-Level Analysis of Hfq and SmpB Deletion Mutants in Salmonella: Implications for Virulence and Global Protein Translation

    Get PDF
    Using sample-matched transcriptomics and proteomics measurements it is now possible to begin to understand the impact of post-transcriptional regulatory programs in Enterobacteria. In bacteria post-transcriptional regulation is mediated by relatively few identified RNA-binding protein factors including CsrA, Hfq and SmpB. A mutation in any one of these three genes, csrA, hfq, and smpB, in Salmonella is attenuated for mouse virulence and unable to survive in macrophages. CsrA has a clearly defined specificity based on binding to a specific mRNA sequence to inhibit translation. However, the proteins regulated by Hfq and SmpB are not as clearly defined. Previous work identified proteins regulated by hfq using purification of the RNA-protein complex with direct sequencing of the bound RNAs and found binding to a surprisingly large number of transcripts. In this report we have used global proteomics to directly identify proteins regulated by Hfq or SmpB by comparing protein abundance in the parent and isogenic hfq or smpB mutant. From these same samples we also prepared RNA for microarray analysis to determine if alteration of protein expression was mediated post-transcriptionally. Samples were analyzed from bacteria grown under four different conditions; two laboratory conditions and two that are thought to mimic the intracellular environment. We show that mutants of hfq and smpB directly or indirectly modulate at least 20% and 4% of all possible Salmonella proteins, respectively, with limited correlation between transcription and protein expression. These proteins represent a broad spectrum of Salmonella proteins required for many biological processes including host cell invasion, motility, central metabolism, LPS biosynthesis, two-component regulatory systems, and fatty acid metabolism. Our results represent one of the first global analyses of post-transcriptional regulons in any organism and suggest that regulation at the translational level is widespread and plays an important role in virulence regulation and environmental adaptation for Salmonella

    Time-course analysis of the Shewanella amazonensis SB2B proteome in response to sodium chloride shock

    Get PDF
    Shewanellae are microbial models for environmental stress response; however, the sequential expression of mechanisms in response to stress is poorly understood. Here we experimentally determine the response mechanisms of Shewanella amazonensis SB2B during sodium chloride stress using a novel liquid chromatography and accurate mass-time tag mass spectrometry time-course proteomics approach. The response of SB2B involves an orchestrated sequence of events comprising increased signal transduction associated with motility and restricted growth. Following a metabolic shift to branched chain amino acid degradation, motility and cellular replication proteins return to pre-perturbed levels. Although sodium chloride stress is associated with a change in the membrane fatty acid composition in other organisms, this is not the case for SB2B as fatty acid degradation pathways are not expressed and no change in the fatty acid profile is observed. These findings suggest that shifts in membrane composition may be an indirect physiological response to high NaCl stress

    Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    Get PDF
    Dengue virus causes ∼50–100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture

    Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. However, determining protein-coding genes for most new genomes is almost completely performed by inference using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function.</p> <p>Results</p> <p>We experimentally annotated the bacterial pathogen <it>Salmonella </it>Typhimurium 14028, using "shotgun" proteomics to accurately uncover the translational landscape and post-translational features. The data provide protein-level experimental validation for approximately half of the predicted protein-coding genes in <it>Salmonella </it>and suggest revisions to several genes that appear to have incorrectly assigned translational start sites, including a potential novel alternate start codon. Additionally, we uncovered 12 non-annotated genes missed by gene prediction programs, as well as evidence suggesting a role for one of these novel ORFs in <it>Salmonella </it>pathogenesis. We also characterized post-translational features in the <it>Salmonella </it>genome, including chemical modifications and proteolytic cleavages. We find that bacteria have a much larger and more complex repertoire of chemical modifications than previously thought including several novel modifications. Our <it>in vivo </it>proteolysis data identified more than 130 signal peptide and N-terminal methionine cleavage events critical for protein function.</p> <p>Conclusion</p> <p>This work highlights several ways in which application of proteomics data can improve the quality of genome annotations to facilitate novel biological insights and provides a comprehensive proteome map of <it>Salmonella </it>as a resource for systems analysis.</p

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules
    corecore