5 research outputs found

    Adaptation of counters redundant bits with the provision of dual supply and modified clock gating to favour of low power in VLSI

    Get PDF
    750-757The utilization of usual supply voltage and clock for repetitive state transistors in digital circuits is a fundamental driver for high power utilization. Most significant bit states of the counter stay longer than the least significant bit states and it has some repetitive states. To limit the supply voltage and stop the clock for MSB Flip Flop (FF) transistor, our method uses Control Combinational Logic, Voltage selector and Modified Integrated Clock Gating blocks. The LSB transistor always have a supply voltage of 1.2V and succession of the clock, while MSB transistor gets just 480mV and the clock will be stopped by the this technique. Bring down the supply voltage and quit the clock for redundant states either 0 or 1 in MSB. Meantime supply 1.2V and clock for state changes over from one state to next state. The experimental simulation was done in 45nm CMOS technology using Cadence virtuoso indicates that this asynchronous counter achieves a power savings of 23.57% and the same modified technique when applied to the counters with transmission-gate FF, hybrid-latch FF and sense amplifier FF will have more than 40% power savings and the technique applied in some benchmark circuits will have more than 22% power savings than existing techniques

    Adaptation of counters redundant bits with the provision of dual supply and modified clock gating to favour of low power in VLS

    Get PDF
    The utilization of usual supply voltage and clock for repetitive state transistors in digital circuits is a fundamental driver for high power utilization. Most significant bit states of the counter stay longer than the least significant bit states and it has some repetitive states. To limit the supply voltage and stop the clock for MSB Flip Flop (FF) transistor, our method uses Control Combinational Logic, Voltage selector and Modified Integrated Clock Gating blocks. The LSB transistor always have a supply voltage of 1.2V and succession of the clock, while MSB transistor gets just 480mV and the clock will be stopped by the this technique. Bring down the supply voltage and quit the clock for redundant states either 0 or 1 in MSB. Meantime supply 1.2V and clock for state changes over from one state to next state. The experimental simulation was done in 45nm CMOS technology using Cadence virtuoso indicates that this asynchronous counter achieves a power savings of 23.57% and the same modified technique when applied to the counters with transmission-gate FF, hybrid-latch FF and sense amplifier FF will have more than 40% power savings and the technique applied in some benchmark circuits will have more than 22% power savings than existing techniques

    A Discrete Wavelet Based Feature Extraction and Hybrid Classification Technique for Microarray Data Analysis

    No full text
    Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN), naive Bayes, and support vector machine (SVM). Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT) and moving window technique (MWT) is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection

    Identifying Cancer Targets Based on Machine Learning Methods via Chou’s 5-steps Rule and General Pseudo Components

    No full text
    corecore