20 research outputs found

    The use of dried spent yeast as a low-cost nitrogen supplement in ethanol fermentation from sweet sorghum juice under very high gravity conditions

    Get PDF
    Dried spent yeast (DSY) was used as a low-cost nitrogen supplement for ethanol fermentation from sweet sorghum juice under very high gravity (VHG) conditions by Saccharomyces cerevisiae NP 01. The fermentation was carried out at 30\ubaC in a 5-litre bioreactor. The results showed that DSY promoted ethanol production efficiencies. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) of the sterile juice (total sugar of 280 g l-1) supplemented with 8 g l-1 of DSY were not different from those supplemented with yeast extract and/or peptone at the same amount. The initial yeast cell concentration of 5 x 107 cells ml-1 was found to be optimal for scale-up ethanol production. In addition, an increase in sugar concentration in inoculum preparation medium (from 10 to 100 g l-1) improved the ability of the inoculum to produce ethanol under the VHG conditions. When S. cerevisiae NP 01 grown in the juice containing 100 g l-1 of total sugar was used as the inoculum for ethanol fermentation, the P, Qp and Yp/s obtained were 108.98 \ub1 1.16 g l-1, 2.27 \ub1 0.06 g l-1 h-1 and 0.47 \ub1 0.01 g g-1, respectively. Similar results were also observed when the ethanol fermentation was scaled up to a 50-litre bioreactor under the same conditions. The cost of the sweet sorghum for ethanol production was US$ 0.63 per litre of ethanol. These results clearly indicate the high potential of using sweet sorghum juice supplemented with DSY under VHG fermentation for ethanol production in industrial applications

    Types of gene effects governing the inheritance of oleic and linoleic acids in peanut (Arachis hypogaea L.)

    Get PDF
    Oleic and linoleic acids are major fatty acids in peanut determining the quality and shelf-life of peanut products. A better understanding on the inheritance of these characters is an important for high-oleic breeding programs. The objective of this research was to determine the gene actions for oleic acid, linoleic acid, the ratio of oleic to linoleic acids (O/L ratio) and percentage oil (% oil) in peanut. Georgia-02C, SunOleic 97R (high-oleic genotypes) and KKU 1 (low-oleic genotypes) were used as parents to generate P1, P2, F2, F3, BC11S and BC12S. The entries were planted in a randomized complete block design with four replications in the rainy season (2008) and the dry season (2008/2009). Gas liquid chromatography (GLC) was used to analyze fatty acid compositions. The data were used in generation means analysis to understand gene effects. The differences in season, generation and generation X season interactions were significant for oleic acid in the crosses Georgia-02C X KKU 1 and SunOleic 97R X KKU 1. Additive, dominance and epistasis gene effects were significant for oleic acid, linoleic acid, O/L ratio and % oil. Initial selection can be carried out in early segregating population, and final selection in late generations.Keywords: Breeding, gene actions, generation mean analysis, groundnut, oil qualit

    Ethanol production from sweet sorghum juice under very high gravity conditions: Batch, repeated-batch and scale up fermentation

    Get PDF
    Batch ethanol fermentations from sweet sorghum juice by Saccharomyces cerevisiae NP 01 were carried out in a 500 ml air-locked Erlenmeyer flask under very high gravity (VHG) and static conditions. The maximum ethanol production efficiency was obtained when 9 g l-1 of yeast extract was supplemented to the juice. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) were 120.24 \ub1 1.35 g l-1, 3.01 \ub1 0.08 g l-1 h-1 and 0.49 \ub1 0.01, respectively. Scale up ethanol fermentation in a 5-litre bioreactor at an agitation rate of 100 rev min-1 revealed that P, Qp and Yp/s were 139.51 \ub1 0.11 g l-1, 3.49 \ub1 0.00 g l-1 h-1 and 0.49 \ub1 0.01, respectively, whereas lower P (119.53 \ub1 0.20 g l-1) and Qp (2.13 \ub1 0.01 g l-1 h-1) were obtained in a 50-litre bioreactor. In the repeated-batch fermentation in the 5-litre bioreactor with fill and drain volume of 50% of the working volume, lower P and Qp were observed in the subsequent batches. P in batch 2 to 8 ranged from 103.37 \ub1 0.28 to 109.53 \ub1 1.06 g l-1

    Application of LW7 marker for identification of progenies with male sterility gene in sweet sorghum population

    No full text
    The objectives of this study were to verify the use of LW7 marker in identifying maintainer lines (B-lines) and restorer lines (R-lines) in grain sorghum and sweet sorghum, and to identify B-lines in the F2, BC1F2 and BC2F2 generations. Twenty five accessions of sorghum were evaluated, and LW7 marker correctly identified accessions which presented male sterility gene (rf4) in Suphan Buri1 and 03B cultivars; moreover, these genotypes did not show 779 bp band. The cross between Suphan Buri1 and a male-sterile line (A-line) 03A resulted in a sterilized male, confirming the usefulness of the marker in breeding programs. B-lines in the F2, BC1F2 and BC2F2 generations were identified by LW7 marker. The segregation ratio of 3:1 for male fertility and male sterility in the progenies of the three generations supported the one-gene model of Mendelian segregation. The use of marker assisted selection was successful for line development of sweet sorghum with male sterilit

    The use of dried spent yeast as a low-cost nitrogen supplement in ethanol fermentation from sweet sorghum juice under very high gravity conditions

    Get PDF
    Dried spent yeast (DSY) was used as a low-cost nitrogen supplement for ethanol fermentation from sweet sorghum juice under very high gravity (VHG) conditions by Saccharomyces cerevisiae NP 01. The fermentation was carried out at 30ºC in a 5-litre bioreactor. The results showed that DSY promoted ethanol production efficiencies. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) of the sterile juice (total sugar of 280 g l-1) supplemented with 8 g l-1 of DSY were not different from those supplemented with yeast extract and/or peptone at the same amount. The initial yeast cell concentration of 5 x 107 cells ml-1 was found to be optimal for scale-up ethanol production. In addition, an increase in sugar concentration in inoculum preparation medium (from 10 to 100 g l-1) improved the ability of the inoculum to produce ethanol under the VHG conditions. When S. cerevisiae NP 01 grown in the juice containing 100 g l-1 of total sugar was used as the inoculum for ethanol fermentation, the P, Qp and Yp/s obtained were 108.98 ± 1.16 g l-1, 2.27 ± 0.06 g l-1 h-1 and 0.47 ± 0.01 g g-1, respectively. Similar results were also observed when the ethanol fermentation was scaled up to a 50-litre bioreactor under the same conditions. The cost of the sweet sorghum for ethanol production was US$ 0.63 per litre of ethanol. These results clearly indicate the high potential of using sweet sorghum juice supplemented with DSY under VHG fermentation for ethanol production in industrial applications

    Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses

    Get PDF
    BACKGROUND: During ethanol fermentation, the ethanologenic bacterium, Zymomonas mobilis may encounter several environmental stresses such as heat, ethanol and osmotic stresses due to high sugar concentration. Although supplementation of the compatible solute sorbitol into culture medium enhances cell growth of Z. mobilis under osmotic stress, the protective function of this compound on cell growth and ethanol production by this organism under other stresses such as heat and ethanol has not been described yet. The formation of sorbitol in Z. mobilis was carried out by the action of the glucose-fructose oxidoreductase (GFOR) enzyme which is regulated by the gfo gene. Therefore, the gfo gene in Z. mobilis was disrupted by the fusion-PCR-based construction technique in the present study, and the protective function of sorbitol on cell growth, protein synthesis and ethanol production by Z. mobilis under heat, ethanol, and osmotic stresses was investigated. RESULTS: Based on the fusion-PCR-based construction technique, the gfo gene in Z. mobilis was disrupted. Disruption of the Z. mobilis gfo gene resulted in the reduction of cell growth and ethanol production not only under osmotic stress but also under heat and ethanol stresses. Under these stress conditions, the transcription level of pdc, adhA, and adhB genes involved in the pyruvate-to-ethanol (PE) pathway as well as the synthesis of proteins particularly in Z. mobilis disruptant strain were decreased compared to those of the parent. These findings suggest that sorbitol plays a crucial role not only on cell growth and ethanol production but also on the protection of cellular proteins from stress responses. CONCLUSION: We showed for the first time that supplementation of the compatible solute sorbitol not only promoted cell growth but also increased the ethanol fermentation capability of Z. mobilis under heat, ethanol, and osmotic stresses. Although the molecular mechanism involved in tolerance to stress conditions after sorbitol supplementation is still unclear, this research has provided useful information for the development of the effective ethanol fermentation process particularly under environmental conditions with high temperature or high ethanol and sugar concentration conditions
    corecore