131 research outputs found

    Integrated Detection of Pathogens and Host Biomarkers for Wounds

    Get PDF
    The increasing incidence and complications arising from combat wounds has necessitated a reassessment of methods for effective treatment. Infection, excessive inflammation, and incidence of drug-resistant organisms all contribute toward negative outcomes for afflicted individuals. The organisms and host processes involved in wound progression, however, are incompletely understood. We therefore set out, using our unique technical resources, to construct a profile of combat wounds which did or did not successfully resolve. We employed the Lawrence Livermore Microbial Detection Array and identified a number of nosocomial pathogens present in wound samples. Some of these identities corresponded with bacterial isolates previously cultured, while others were not obtained via standard microbiology. Further, we optimized proteomics protocols for the identification of host biomarkers indicative of various stages in wound progression. In combination with our pathogen data, our biomarker discovery efforts will provide a profile corresponding to wound complications, and will assist significantly in treatment of these complex cases

    Report for the NGFA-5 project.

    Get PDF
    The objective of this project is to provide DHS a comprehensive evaluation of the current genomic technologies including genotyping, TaqMan PCR, multiple locus variable tandem repeat analysis (MLVA), microarray and high-throughput DNA sequencing in the analysis of biothreat agents from complex environmental samples. To effectively compare the sensitivity and specificity of the different genomic technologies, we used SNP TaqMan PCR, MLVA, microarray and high-throughput illumine and 454 sequencing to test various strains from B. anthracis, B. thuringiensis, BioWatch aerosol filter extracts or soil samples that were spiked with B. anthracis, and samples that were previously collected during DHS and EPA environmental release exercises that were known to contain B. thuringiensis spores. The results of all the samples against the various assays are discussed in this report

    Report for Evaluation of Canonical SNP Taqman Assays to Detect Biothreat Agents and Environmental Samples for DHS

    Full text link
    Abstract not provide

    Nonstructural proteins nsp2TF and nsp2N of porcine reproductive and respiratory syndrome virus (PRRSV) play important roles in suppressing host innate immune responses.

    Get PDF
    Recently, we identified a unique -2/-1 ribosomal frameshift mechanism in PRRSV, which yields two truncated forms of nonstructural protein (nsp) 2 variants, nsp2TF and nsp2N. Here, in vitro expression of individual PRRSV nsp2TF and nsp2N demonstrated their ability to suppress cellular innate immune responses in transfected cells. Two recombinant viruses were further analyzed, in which either nsp2TF was C-terminally truncated (vKO1) or expression of both nsp2TF and nsp2N was knocked out (vKO2). Host cellular mRNA profiling showed that a panel of cellular immune genes, in particular those involved in innate immunity, was upregulated in cells infected with vKO1 and vKO2. Compared to the wild-type virus, vKO1 and vKO2 expedited the IFN-α response and increased NK cell cytotoxicity, and subsequently enhanced T cell immune responses in infected pigs. Our data strongly implicate nsp2TF/nsp2N in arteriviral immune evasion and demonstrate that nsp2TF/nsp2N-deficient PRRSV is less capable of counteracting host innate immune responses

    Placental determinants of fetal growth: identification of key factors in the insulin-like growth factor and cytokine systems using artificial neural networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Changes and relationships of components of the cytokine and IGF systems have been shown in placenta and cord serum of fetal growth restricted (FGR) compared with normal newborns (AGA). This study aimed to analyse a data set of clinical and biochemical data in FGR and AGA newborns to assess if a mathematical model existed and was capable of identifying these two different conditions in order to identify the variables which had a mathematically consistent biological relevance to fetal growth.</p> <p>Methods</p> <p>Whole villous tissue was collected at birth from FGR (N = 20) and AGA neonates (N = 28). Total RNA was extracted, reverse transcribed and then real-time quantitative (TaqMan) RT-PCR was performed to quantify cDNA for IGF-I, IGF-II, IGFBP-1, IGFBP-2 and IL-6. The corresponding proteins with TNF-α in addition were assayed in placental lysates using specific kits. The data were analysed using Artificial Neural Networks (supervised networks), and principal component analysis and connectivity map.</p> <p>Results</p> <p>The IGF system and IL-6 allowed to predict FGR in approximately 92% of the cases and AGA in 85% of the cases with a low number of errors. IGF-II, IGFBP-2, and IL-6 content in the placental lysates were the most important factors connected with FGR. The condition of being FGR was connected mainly with the IGF-II placental content, and the latter with IL-6 and IGFBP-2 concentrations in placental lysates.</p> <p>Conclusion</p> <p>These results suggest that further research in humans should focus on these biochemical data. Furthermore, this study offered a critical revision of previous studies. The understanding of this system biology is relevant to the development of future therapeutical interventions possibly aiming at reducing IL-6 and IGFBP-2 concentrations preserving IGF bioactivity in both placenta and fetus.</p

    Ordered magnetic fields around the 3C 84 central black hole

    Get PDF
    Context. 3C 84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of very-long-baseline interferometry (VLBI) above the hitherto available maximum frequency of 86 GHz.Aims. Using ultrahigh resolution VLBI observations at the currently highest available frequency of 228 GHz, we aim to perform a direct detection of compact structures and understand the physical conditions in the compact region of 3C 84.Methods. We used Event Horizon Telescope (EHT) 228 GHz observations and, given the limited (u; v)-coverage, applied geometric model fitting to the data. Furthermore, we employed quasi-simultaneously observed, ancillary multi-frequency VLBI data for the source in order to carry out a comprehensive analysis of the core structure.Results. We report the detection of a highly ordered, strong magnetic field around the central, supermassive black hole of 3C 84. The brightness temperature analysis suggests that the system is in equipartition. We also determined a turnover frequency of gamma(m) = (113 +/- 4) GHz, a corresponding synchrotron self-absorbed magnetic field of B-SSA = (2.9 +/- 1.6) G, and an equipartition magnetic field of B-eq = (5.2 +/- 0.6) G. Three components are resolved with the highest fractional polarisation detected for this object (m(net) = (17.0 +/- 3.9)%). The positions of the components are compatible with those seen in low-frequency VLBI observations since 2017-2018. We report a steeply negative slope of the spectrum at 228 GHz. We used these findings to test existing models of jet formation, propagation, and Faraday rotation in 3C 84.Conclusions. The findings of our investigation into di fferent flow geometries and black hole spins support an advection-dominated accretion flow in a magnetically arrested state around a rapidly rotating supermassive black hole as a model of the jet-launching system in the core of 3C 84. However, systematic uncertainties due to the limited (u, v)-coverage, however, cannot be ignored. Our upcoming work using new EHT data, which offer full imaging capabilities, will shed more light on the compact region of 3C 84

    Detection of Epstein-Barr virus (EBV) in human lymphoma tissue by a novel microbial detection array

    Get PDF
    BACKGROUND: Infectious agents are estimated to play a causative role in approximately 20% of cancers worldwide. Viruses, notably the Epstein-Barr virus (EBV), are associated with 10-15% of B-cell lymphomas and are found at a higher frequency in immunosuppressed patients. In this study, we screened human lymphoma tissues using a novel Lawrence Livermore Microbial Detection Array (LLMDA), a comprehensive detection system that contains probes for all sequenced viruses and bacteria. This technology has been applied to identify pathogen-associated diseases. RESULTS: We evaluated samples from 58 cases with various lymphoid tissue disorders using LLMDA. These included 30 B-cell lymphomas (9 indolent and 21 aggressive type), 2 T-cell lymphomas and 2 NK/T cell lymphomas, 4 plasmacytomas as well as 8 specimens of benign lymphoid tissue. Five of 21 high-grade B-cell lymphomas were positive for Epstein-Barr virus-encoded small RNA (EBER+), while all the indolent B-cell lymphomas were EBER-. Similarly, both NK/T cell lymphomas were EBER+, and the benign tissues were EBER-. We also screened 10 cases of post-transplant lymphoproliferative disorder (PTLD). Five of these cases (4 B-cell lymphomas and 1 NK/T cell lymphoma) were EBER+, and the remaining five cases were EBER-. CONCLUSIONS: We have confirmed the reliability of the LLMDA methods by detecting EBV in EBV-positive lymphomas while observing no false-positive results in EBV-negative lymphomas. The LLMDA technique provides a sensitive and alternative method for identifying known viral pathogen associated with tumors and may prove useful for future clinical identification of novel cancer-associated viral pathogens
    corecore