1,182 research outputs found

    PRS3 The Effect Of Aat Replacement Therapy on Patient Length And Quality Of Life - a Markov Model

    Get PDF

    Collective Modes and Raman Scattering in One Dimensional Electron Systems

    Full text link
    In this paper, we review recent development in the theory of resonant inelastic light (Raman) scattering in one-dimensional electron systems. The particular systems we have in mind are electron doped GaAs based semiconductor quantum wire nanostructures, although the theory can be easily modified to apply to other one-dimensional systems. We compare the traditional conduction-band-based non-resonant theories with the full resonant theories including the effects of interband transitions. We find that resonance is essential in explaining the experimental data in which the single particle excitations have finite spectral weights comparable to the collective charge density excitations. Using several different theoretical models (Fermi liquid model, Luttinger liquid model, and Hubbard model) and reasonable approximations, we further demonstrate that the ubiquitously observed strong single particle excitations in the experimental Raman spectra cannot be explained by the spinless multi-spinon excitations in the Luttinger liquid description. The observability of distinct Luttinger liquid features in the Raman scattering spectroscopy is critically discussed.Comment: A review to be published in the special issue of Solid State Communications on one-dimensional system

    Persistence in q-state Potts model: A Mean-Field approach

    Full text link
    We study the Persistence properties of the T=0 coarsening dynamics of one dimensional qq-state Potts model using a modified mean-field approximation (MMFA). In this approximation, the spatial correlations between the interfaces separating spins with different Potts states is ignored, but the correct time dependence of the mean density P(t)P(t) of persistent spins is imposed. For this model, it is known that P(t)P(t) follows a power-law decay with time, P(t)∼t−θ(q)P(t)\sim t^{-\theta(q)} where θ(q)\theta(q) is the qq-dependent persistence exponent. We study the spatial structure of the persistent region within the MMFA. We show that the persistent site pair correlation function P2(r,t)P_{2}(r,t) has the scaling form P2(r,t)=P(t)2f(r/t1/2)P_{2}(r,t)=P(t)^{2}f(r/t^{{1/2}}) for all values of the persistence exponent θ(q)\theta(q). The scaling function has the limiting behaviour f(x)∼x−2θf(x)\sim x^{-2\theta} (x≪1x\ll 1) and f(x)→1f(x)\to 1 (x≫1x\gg 1). We then show within the Independent Interval Approximation (IIA) that the distribution n(k,t)n(k,t) of separation kk between two consecutive persistent spins at time tt has the asymptotic scaling form n(k,t)=t−2ϕg(t,ktϕ)n(k,t)=t^{-2\phi}g(t,\frac{k}{t^{\phi}}) where the dynamical exponent has the form ϕ\phi=max(1/2,θ{1/2},\theta). The behaviour of the scaling function for large and small values of the arguments is found analytically. We find that for small separations k≪tϕ,n(k,t)∼P(t)k−τk\ll t^{\phi}, n(k,t)\sim P(t)k^{-\tau} where τ\tau=max(2(1−θ),2θ2(1-\theta),2\theta), while for large separations k≫tϕk\gg t^{\phi}, g(t,x)g(t,x) decays exponentially with xx. The unusual dynamical scaling form and the behaviour of the scaling function is supported by numerical simulations.Comment: 11 pages in RevTeX, 10 figures, submitted to Phys. Rev.

    Efficient Raman Sideband Generation in a Coherent Atomic Medium

    Get PDF
    We demonstrate the efficient generation of Raman sidebands in a medium coherently prepared in a dark state by continuous-wave low-intensity laser radiation. Our experiment is performed in sodium vapor excited in Λ\Lambda configuration on the D1_{1} line by two laser fields of resonant frequencies ω1\omega_{1} and ω2\omega_{2}, and probed by a third field % \omega_{3}. First-order sidebands for frequencies ω1\omega_{1}, ω2\omega_{2} and up to the third-order sidebands for frequency ω3\omega_{3} are observed. The generation starts at a power as low as 10 microwatt for each input field. Dependencies of the intensities of both input and generated waves on the frequency difference (ω1−ω2\omega_{1}-\omega_{2}), on the frequency ω3\omega_{3} and on the optical density are investigated.Comment: 7 pages, 6 figure

    Universal persistence exponents in an extremally driven system

    Full text link
    The local persistence R(t), defined as the proportion of the system still in its initial state at time t, is measured for the Bak--Sneppen model. For 1 and 2 dimensions, it is found that the decay of R(t) depends on one of two classes of initial configuration. For a subcritical initial state, R(t)\sim t^{-\theta}, where the persistence exponent \theta can be expressed in terms of a known universal exponent. Hence \theta is universal. Conversely, starting from a supercritical state, R(t) decays by the anomalous form 1-R(t)\sim t^{\tau_{\rm ALL}} until a finite time t_{0}, where \tau_{\rm ALL} is also a known exponent. Finally, for the high dimensional model R(t) decays exponentially with a non--universal decay constant.Comment: 4 pages, 6 figures. To appear in Phys. Rev.

    Persistence in higher dimensions : a finite size scaling study

    Full text link
    We show that the persistence probability P(t,L)P(t,L), in a coarsening system of linear size LL at a time tt, has the finite size scaling form P(t,L)∼L−zθf(tLz)P(t,L)\sim L^{-z\theta}f(\frac{t}{L^{z}}) where θ\theta is the persistence exponent and zz is the coarsening exponent. The scaling function f(x)∼x−θf(x)\sim x^{-\theta} for x≪1x \ll 1 and is constant for large xx. The scaling form implies a fractal distribution of persistent sites with power-law spatial correlations. We study the scaling numerically for Glauber-Ising model at dimension d=1d = 1 to 4 and extend the study to the diffusion problem. Our finite size scaling ansatz is satisfied in all these cases providing a good estimate of the exponent θ\theta.Comment: 4 pages in RevTeX with 6 figures. To appear in Phys. Rev.

    The pharmacokinetics and toxicity of morning vs. evening tobramycin dosing for pulmonary exacerbations of cystic fibrosis:A randomised comparison

    Get PDF
    AbstractBackgroundCircadian variation in renal toxicity of aminoglycosides has been demonstrated in animal and human studies. People with CF are frequently prescribed aminoglycosides. Altered pharmacokinetics of aminoglycosides are predictive of toxicity.AimTo investigate whether the time of day of aminoglycoside administration modulates renal excretion of tobramycin and toxicity in children with CF. To determine whether circadian rhythms are disrupted in children with CF during hospital admission.MethodsChildren (age 5–18years) with CF scheduled for tobramycin therapy were randomly allocated to receive tobramycin at 0800 or 2000h. Serum tobramycin levels were drawn at 1h and between 3.5 and 5h post-infusion between days 5 and 9 of therapy. Melatonin levels were measured serially at intervals from 1800h in the evening until 1200h on the next day. Circadian rhythm was categorised as normal when dim light melatonin onset was demonstrated between 1800 and 2200h and/or peak melatonin levels were observed during the night. Weight and spirometry were measured at the start and end of the therapy. Urinary biomarkers of kidney toxicity (KIM1, NAG, NGAL, IL-18 and CysC) were assayed at the start and end of the course of tobramycin.ResultsEighteen children were recruited to the study. There were no differences in renal clearance between the morning and evening groups. The increase in urinary KIM-1 was greater in the evening dosage group compared to the morning group (mean difference, 0.73ng/mg; 95% CI, 0.14 to 1.32; p=0.018). There were no differences in the other urinary biomarkers. There was normal circadian rhythm in 7/11 participants (64%).ConclusionsRenal elimination of tobramycin was not affected by the time of day of administration. Urinary KIM-1 raises the possibility of greater nephrotoxicity with evening administration. Four children showed disturbed circadian rhythm and high melatonin levels (ClinicalTrials.gov NCT01207245)

    Enhanced four-wave mixing via elimination of inhomogeneous broadening by coherent driving of quantum transition with control fields

    Get PDF
    We show that atoms from wide velocity interval can be concurrently involved in Doppler-free two-photon resonant far from frequency degenerate four-wave mixing with the aid of auxiliary electromagnetic field. This gives rise to substantial enhancement of the output radiation generated in optically thick medium. Numerical illustrations addressed to typical experimental conditions are given.Comment: LaTeX2e, hyperref, 7 pages, 5 figures, to appear in PRA 1 august 200

    Resonantly damped surface and body MHD waves in a solar coronal slab with oblique propagation

    Full text link
    The theory of magnetohydrodynamic (MHD) waves in solar coronal slabs in a zero-β\beta configuration and for parallel propagation of waves does not allow the existence of surface waves. When oblique propagation of perturbations is considered both surface and body waves are able to propagate. When the perpendicular wave number is larger than a certain value, the body kink mode becomes a surface wave. In addition, a sausage surface mode is found below the internal cut-off frequency. When non-uniformity in the equilibrium is included, surface and body modes are damped due to resonant absorption. In this paper, first, a normal-mode analysis is performed and the period, the damping rate, and the spatial structure of eigenfunctions are obtained. Then, the time-dependent problem is solved, and the conditions under which one or the other type of mode is excited are investigated.Comment: 19 pages, 9 figures, accepted for publication in Solar Physic
    • …
    corecore