7 research outputs found

    Biochemical assessment of nutritional status in Indian mustard

    Get PDF
    The present investigation was carried out to evaluate the nutritional potential of five different Indian mustard genotypes. Fatty acid composition was determined in the oil, whereas seed meal was analyzed for limiting amino acids (tryptophan and methionine), protein content, glucosinolate content and antioxidant potential (DPPH free radical scavenging activity, total antioxidant activity and iron chelating activity). The monounsaturated fatty acids (MUFA) were found to be maximum in RH 0749 (58.70 %) followed by RH (OE) 0801 (48.91 %), JM 6011 (47.03 %), EC 597328 and EC 597340 (45.77 %). Polyunsaturated fatty acids (PUFA) were observed maximum in EC 597340 (47.45 %).Glucosinolate content ranged from 42.80 (EC 597328) to 79.79 ?mole/g defatted seed meal (EC 597340). The methanolic seed meal extract exhibited a concentration dependent elimination of DPPH free radicals. All the five genotypes showed about 50 % inhibition in 3.0 mg of dry seed meal. The highest total antioxidant activity (20.41mg/g) and metal ion chelating activity (32.58 %) was observed in RH 0749. Protein content varied from 33.57 [RH (OE) 0801] to 38.01 % (RH 0749). Maximum methionine and tryptophan content were recorded in RH 0749 (0.99 and 1.01 g/100g protein, respectively). Thus, RH 0749 was observed as a potent variety in terms of total antioxidant activity, metal ion chelating activity, protein content, methionine and tryptophan content

    An oxaloacetate decarboxylase homologue protein influences the intracellular survival of Legionella pneumophila

    Get PDF
    Legionella pneumophila is a facultative intracellular parasite which is able to survive in various eukaryotic cells. We characterised a Tn5-mutant of the L. pneumophila Corby strain and were able to identify the insertion site of the transposon. It is localised within an open reading frame which shows high homology to the α-subunit of the oxaloacetate decarboxylase (OadA) of Klebsiella pneumoniae. The OadA homologous protein of L. pneumophila was detected in the wild-type strain by Western blotting. Since the intracellular multiplication of the oadA− mutant strain is reduced in guinea pig alveolar macrophages and human monocytes, it is concluded that the oadA gene product has an effect on the intracellular survival of L. pneumophil

    Metallocatanionic vesicle-mediated enhanced singlet oxygen generation and photodynamic therapy of cancer cells

    No full text
    In clinics, photodynamic therapy (PDT) is established as a non-invasive therapeutic modality for certain types of cancers and skin disease. However, due to poor water solubility, photobleaching, and the dark toxicity of photosensitizers (PSs), further developments are required to improve the efficiency of PDT. Herein, we report the role of metallocatanionic vesicles (MCVs) in enhancing the phototoxicity of methylene blue (MB) against cancer cells. These MCVs were prepared via a facile and quick solution–solution mixing method using a cationic single-chain metallosurfactant (FeCPC I) in combination with anionic sodium oleate (Na Ol). For singlet oxygen (1O2) generation and PDT studies, two fractions of FeCPC I : Na Ol, i.e., 30 : 70 (V37) and 70 : 30 (V73), were chosen based on their long-term stability in aqueous media. A cationic PS MB was loaded into these vesicles. The MB-loaded MCV 30 : 70 and 70 : 30 fractions enhanced the 1O2 generation by 0.10- and 0.40-fold, respectively, compared with MB alone. Upon illumination using a 650 nm laser, these MB-loaded V73 and V37 MCVs significantly decreased the metabolic activity of MCF-7 cells by ≤50% at a concentration of 0.75 μM. Furthermore, the SOSG assay revealed that the synthesized MCVs enhanced the intracellular 1O2 compared with MB alone. The MB-loaded V73 MCVs showed the highest 1O2-mediated membrane damage and cell-killing effect, as confirmed using the differential nuclear staining assay (DNS), which is attributed to the cellular uptake profile of the different MCV fractions. Altogether, this work shows the advantage of using these biocompatible and dual-charge MCVs as promising delivery vehicles that can enhance the 1O2 generation from the PS. This work suggests the future application of these Fe-MCVs in magnetically guided PDT

    Biocompatible metallosurfactant-based nanocolloid-loaded Rose Bengal with excellent singlet oxygen-induced phototoxicity efficiency against cancer cells

    No full text
    Photodynamic therapy (PDT) is facing challenges such as poor solubility, precise delivery, self-aggregation, and photobleaching of photosensitizers with cancer cells due to their less tendency to accumulate in tumor tissues. To address these challenges, we have explored a Rose Bengal (RB)-loaded metallocatanionic vesicles (MCVs) nanosystem for the phototoxicity of cancer cells. Different sets of MCVs were prepared by two different cationic single-chain metallosurfactants, i.e., hexadecylpyridinium trichlorocuprate (CuCPC I) and hexadecylpyridinium trichloroferrate (FeCPC I) in combination with anionic double-chain sodium bis(2-ethylhexyl)sulfosuccinate (AOT) surfactant in phosphate buffer saline of pH 7.4. The RB-loaded CuCPC I:AOT and FeCPC I:AOT vesicles enhanced the maximum singlet oxygen (1O2) generation by 1-fold and 3-fold, respectively, compared to pure RB. Upon irradiation with a 532 nm laser for 10 min, these RB-loaded CuCPC I:AOT and FeCPC I:AOT MCVs significantly decreased the metabolic activity of U-251 cells by 70% and 85% at MCVs concentration of 0.75 μM, respectively. Furthermore, RB-loaded MCVs showed the highest intracellular 1O2-mediated membrane damage and cell-killing effect as confirmed by singlet oxygen sensor green and differential nuclear staining assay, which is attributed to the cellular uptake profile of different RB-loaded MCVs fractions. Caspase 3/7 assay confirmed the apoptotic pathway of cell death by activating caspase. Therefore, the photoactivation of RB-loaded MCVs led to a significant reduction in the viability of U-251 cells (maximum 85%), which resulted in cell death. Our study demonstrated the advantage of using these dual-charge and biocompatible metallocatanionic vesicles as a promising delivery system of photodynamic therapy that can enhance 1O2 generation from PS and can be further utilized in photomedicine

    Gemini Surfactant Mediated Catansomes for Enhanced Singlet Oxygen Generation of Rose Bengal and Their Phototoxicity against Cancer Cells

    Full text link
    Photodynamic therapy (PDT) is an innovative technique for cancer treatment with minimal side effects, based on the use of a photosensitizer, oxygen, and light. Photosensitizers (PSs) have several limitations, that may limit their clinical use, like poor solubilization, self-aggregation, and lack of specific targeting, which can be addressed with the use of nanomaterials. Herein, a unique type of catansomes (CaSs) was prepared using a gemini imidazolium-based surfactant (1,3-bis[(3-octadecyl-1-imidazolio)methyl]benzene dibromide (GBIB) and a double chain surfactant, diaoctyl sodium sulfosuccinate or Aerosol OT (AOT). The formation of CaS GBIB/AOT was optimized in various ethanol/water (E/W) solvent ratios by employing a facile, quick, and most reliable solution-solution mixing method. The CaS was characterized by dynamic light scattering (DLS) and field emission gun scanning electron microscopy (FEG-SEM) techniques. The experimental results reveal that stable CaSs with a spherical shape were obtained at lower concentration (100 μM). Rose Bengal (RB), a PS of the xanthene family, was incorporated into these prepared CaSs, as proven by fluorescence spectroscopy, UV-visible absorption spectroscopy, and confocal laser scanning microscopy. Singlet oxygen (1O2) generation studies revealed the relevant role of the E/W solvent ratio as there was a 4-fold boost in the 1O2 production for GBIB/AOT in E/W = 50:50 and around 3-fold in E/W = 30:70. Also, the GBIB-rich 80:20 fraction was more efficient in increasing the 1O2 generation as compared to the AOT rich fraction (20:80). Further, their phototoxicity was tested in a water-rich solvent ratio (E/W = 30:70) against MCF-7 cells. Upon irradiation with a 532 nm laser (50 mW) for 5 min, RB@GBIB/AOT(20:80) fraction caused 50% decrease in the metabolic activity of MCF-7 cells, and RB@GBIB/AOT(80:20) fraction produced a maximum 85% decrease in cell viability. Furthermore, the enhancement in intracellular 1O2 generation by RB@GBIB/AOT, as compared to pure RB, was confirmed with singlet oxygen sensor green (SOSG). This new type of CaS based on gemini surfactants exhibiting a large amount of 1O2 generation, holds great interest for several applications, such as use in photomedicine in future
    corecore