23 research outputs found

    Striatal bilateral control of skilled forelimb movement

    Get PDF
    Skilled motor behavior requires bihemispheric coordination, and participation of striatal outputs originating from two neuronal groups identified by distinctive expression of D1 or D2 dopamine receptors. We trained mice to reach for and grasp a single food pellet and determined how the output pathways differently affected forelimb trajectory and task efficiency. We found that inhibition and excitation of D1-expressing spiny projection neurons (D1SPNs) have a similar effect on kinematics results, as if excitation and inhibition disrupt the whole ensemble dynamics and not exclusively one kind of output. In contrast, D2SPNs participate in control of target accuracy. Further, ex vivo electrophysiological comparison of naive mice and mice exposed to the task showed stronger striatal neuronal connectivity for ipsilateral D1 and contralateral D2 neurons in relation to the paw used. In summary, while the output pathways work together to smoothly execute skill movements, practice of the movement itself changes synaptic patterns.journal articl

    "Subjetividad y Cultura."

    No full text
    p.51-56

    Analysis of aztec ceramic by PIXE and HEHIXE

    No full text

    Enhancing motor learning by increasing stability of newly formed dendritic spines in motor cortex

    No full text
    This upload includes additional MATLAB files used for minor automated analysis of whole-cell recording and behavior data
    corecore