624 research outputs found
Recommended from our members
Simple network management protocol co- existence with hydrocarbon process automation communication real-time network
Hydrocarbon Process Automation Applications (HPAA) utilizes Real-time network connecting process instrumentations, controllers, and real-time logic control applications. Conventional practice is to dedicate a real-time network for process automation applications and prevent other applications from utilizing the same infrastructure. An important application that can help optimize, improve network performance, and provide rapid response time in network diagnostics and mitigation is Simple Network Management Protocol (SNMP). This paper addresses the co-existence of SNMP traffic with real-time applications. The impacts of activating this protocol with the real-time HPAA utilizing high speed Ethernet network design will be examined. Empirical data for an implemented Hydrocarbon process automation system will be used to illustrate the interdependency of application performance, traffic mix, and potential areas of improvements. The outcomes of this effort demonstrate the co-existence of SNMP with HPPA, given special considerations (i.e., bandwidth, number of applications, etc.)
Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double-continuum of a plasmonic metamolecule
Coupling between tuneable broadband modes of an array of plasmonic
metamolecules and a vibrational mode of carbonyl bond of poly(methyl
methacrylate) is shown experimentally to produce a Fano resonance, which can be
tuned in situ by varying the polarization of incident light. The interaction
between the plasmon modes and the molecular resonance is investigated using
both rigorous electromagnetic calculations and a quantum mechanical model
describing the quantum interference between a discrete state and two continua.
The predictions of the quantum mechanical model are in good agreement with the
experimental data and provide an intuitive interpretation, at the quantum
level, of the plasmon-molecule coupling
Iranian Articles in Medical Ethics: An Altmetrics Approach on Social Media Vs. a Bibliometric Study in Scopus Database
Traditional citation analysis has been greatly criticized because the process of citation accumulation requires considerable time after publication. So, the term “altmetrics” was proposed in 2010 to measure the scientific and social impact of a paper. According to the deficiencies of traditional citation analysis, we performed a comprehensive search for medical ethics publications using the altmetrics approach from the beginning until 2019. In this descriptive-analytical study, we retrieved the articles discussing any topics relating to medical ethics that published in the Scopus database from the beginning till 2019 using related medical ethics keywords. A total number of 455 articles with altmetrics scores and citations, included in this study. Altmetrics data were extracted via an altmetrics bookmarklet. Dimensions, Mendeley, and Twitter, had prominent sources of attention on social media platforms. The most number of tweets, and Mendeley’s attentions, in the medical ethics fields, originated from the United States (US) and the United Kingdom (UK). Moreover, master students have the largest share in the citation of articles in Mendeley. Journal of Medical Ethics and History of Medicine has the most proportion of altmetrics score among Iranian papers in medical ethics. The correlation between the altmetrics score and citation index was significant (p <0.05). The medical ethics researchers have to pay more attention to social activities (such as creating and updating their profiles on social media) on the web for wide dissemination and proper evaluation of their scientific publications
Gut-brain Axis and migraine headache. A comprehensive review
The terminology "gut-brain axis "points out a bidirectional relationship between the GI system and the central nervous system (CNS). To date, several researches have shown that migraine is associated with some gastrointestinal (GI) disorders such as Helicobacter pylori (HP) infection, irritable bowel syndrome (IBS), and celiac disease (CD). The present review article aims to discuss the direct and indirect evidence suggesting relationships between migraine and the gut-brain axis. However, the mechanisms explaining how the gut and the brain may interact in patients with migraine are not entirely clear. Studies suggest that this interaction seems to be influenced by multiple factors such as inflammatory mediators (IL-1β, IL-6, IL-8, and TNF-α), gut microbiota profile, neuropeptides and serotonin pathway, stress hormones and nutritional substances. Neuropeptides including CGRP, SP, VIP, NPY are thought to have antimicrobial impact on a variety of the gut bacterial strains and thus speculated to be involved in the bidirectional relationship between the gut and the brain. According to the current knowledge, migraine headache in patients harboring HP might be improved following the bacteria eradication. Migraineurs with long headache history and high headache frequency have a higher chance of being diagnosed with IBS. IBS and migraine share some similarities and can alter gut microflora composition and thereby may affect the gut-brain axis and inflammatory status. Migraine has been also associated with CD and the condition should be searched particularly in patients with migraine with occipital and parieto-occipital calcification at brain neuroimaging. In those patients, gluten-free diet can also be effective in reducing migraine frequency. It has also been proposed that migraine may be improved by dietary approaches with beneficial effects on gut microbiota and gut-brain axis including appropriate consumption of fiber per day, adhering to a low glycemic index diet, supplementation with vitamin D, omega-3 and probiotics as well as weight loss dietary plans for overweight and obese patients
CoNi alloy nanoparticles for cancer theranostics: synthesis, physical characterization, in vitro and in vivo studies
Nanomaterials are attracting increasing interest in many biomedical fields, including the fight against cancer. In this context, we successfully synthesized CoNi alloy nanoparticles (NPs) by a simple polyol process. The magnetic characteristics of the products were measured by vibration sample magnometry, which revealed that the samples have soft ferromagnetic behavior. The microstructure and morphology were inspected by X-ray diffraction and scanning electron microscopy, respectively. Human cancer cells derived from the breast (MCF7) and oral cavity (C152) and normal cells derived from human umbilical vein endothelial cells (HUVECs) were treated with increasing concentrations of CoNi NPs, and their cytotoxic effect was measured via MTT and lactate dehydrogenase (LDH) leakage assays. We found that treatments by using 12.5 to 400 µg/mL of Co0.5Ni0.5, Co0.6Ni0.4, and Co0.4Ni0.6 NPs were associated with significant concentration-dependent toxicity toward such cell lines and profoundly enhanced LDH leakage following 48 h of exposure (P < 0.05 compared with untreated cells). Besides, a NP dose of 6.25 µg/mL did not affect the survival of HUVECs while leading to marked cell death in MCF7 and C152 cells. In vivo experiments in rats were done to investigate the biochemical and histopathological changes over three weeks, following intraperitoneal administration of Co0.5Ni0.5, Co0.6Ni0.4, and Co0.4Ni0.6 NPs (100 mg/kg). As compared with the controls, the exposure to NPs caused significant elevations in aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, serum creatinine, serum catalase activity, serum superoxide dismutase, and liver malondialdehyde levels. Also, rats treated with Co0.6Ni0.4 NPs showed more severe histopathological changes of the liver and kidney. Our findings represent an essential step toward developing theranostic nanoplatforms for selective cancer treatment
Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids
Background: The effects of the dietary oils with differing fatty acid profiles on rumen fermentation, microbial population, and digestibility in goats were investigated. In Experiment I, rumen microbial population and fermentation profiles were evaluated on 16 fistulated male goats that were randomly assigned to four treatment groups: i) control (CNT), ii) olive oil (OL), iii) palm olein oil (PO), and iv) sunflower oil (SF). In Experiment II, another group of 16 male goats was randomly assigned to the same dietary treatments for digestibility determination. Results:
Rumen ammonia concentration was higher in CNT group compared to treatment groups receiving dietary oils. The total VFA and acetate concentration were higher in SF and OL groups, which showed that they were significantly affected by the dietary treatments. There were no differences in total microbial population. However, fibre degrading bacteria populations were affected by the interaction between treatment and day of sampling. Significant differences were observed in apparent digestibility of crude protein and ether extract of treatment groups containing dietary oils compared to the control group. Conclusions: This study demonstrated that supplementation of different dietary oils containing different fatty acid profiles improved rumen fermentation by reducing ammonia concentration and increasing total VFA concentration, altering fibre degrading bacteria population, and improving apparent digestibility of crude protein and ether extract
Quantifying the efficiency of hydroxyapatite mineralising peptides
We present a non-destructive analytical calibration tool to allow quantitative assessment of individual calcium phosphates such as hydroxyapatite (HAP) from mixtures including brushite. Many experimental approaches are used to evaluate the mineralising capabilities of biomolecules including peptides. However, it is difficult to quantitatively compare the efficacy of peptides in the promotion of mineralisation when inseparable mixtures of different minerals are produced. To address this challenge, a series of hydroxyapatite and brushite mixtures were produced as a percent/weight (0–100%) from pure components and multiple (N=10) XRD patterns were collected for each mixture. A linear relationship between the ratio of selected peak heights and the molar ratio was found. Using this method, the mineralising capabilities of three known hydroxyapatite binding peptides, CaP(S) STLPIPHEFSRE, CaP(V) VTKHLNQISQSY and CaP(H) SVSVGMKPSPRP, was compared. All three directed mineralisation towards hydroxyapatite in a peptide concentration dependent manner. CaP(V) was most effective at inducing hydroxyapatite formation at higher reagent levels (Ca2+ = 200mM), as also seen with peptide-silk chimeric materials, whereas CaP(S) was most effective when lower concentrations of calcium (20mM) and phosphate were used. The approach can be extended to investigate HAP mineralisation in the presence of any number of mineralisation promoters or inhibitors
Robust Single-view Cone-beam X-ray Pose Estimation with Neural Tuned Tomography (NeTT) and Masked Neural Radiance Fields (mNeRF)
Many tasks performed in image-guided, mini-invasive, medical procedures can
be cast as pose estimation problems, where an X-ray projection is utilized to
reach a target in 3D space. Expanding on recent advances in the differentiable
rendering of optically reflective materials, we introduce new methods for pose
estimation of radiolucent objects using X-ray projections, and we demonstrate
the critical role of optimal view synthesis in performing this task. We first
develop an algorithm (DiffDRR) that efficiently computes Digitally
Reconstructed Radiographs (DRRs) and leverages automatic differentiation within
TensorFlow. Pose estimation is performed by iterative gradient descent using a
loss function that quantifies the similarity of the DRR synthesized from a
randomly initialized pose and the true fluoroscopic image at the target pose.
We propose two novel methods for high-fidelity view synthesis, Neural Tuned
Tomography (NeTT) and masked Neural Radiance Fields (mNeRF). Both methods rely
on classic Cone-Beam Computerized Tomography (CBCT); NeTT directly optimizes
the CBCT densities, while the non-zero values of mNeRF are constrained by a 3D
mask of the anatomic region segmented from CBCT. We demonstrate that both NeTT
and mNeRF distinctly improve pose estimation within our framework. By defining
a successful pose estimate to be a 3D angle error of less than 3 deg, we find
that NeTT and mNeRF can achieve similar results, both with overall success
rates more than 93%. However, the computational cost of NeTT is significantly
lower than mNeRF in both training and pose estimation. Furthermore, we show
that a NeTT trained for a single subject can generalize to synthesize
high-fidelity DRRs and ensure robust pose estimations for all other subjects.
Therefore, we suggest that NeTT is an attractive option for robust pose
estimation using fluoroscopic projections
- …