1,650 research outputs found

    Pentaquark state in pole-dominated QCD sum rules

    Full text link
    We propose a new approach in QCD sum rules applied for exotic hadrons with a number of quarks, exemplifying the pentaquark Theta^{+} (I=0,J=1/2) in the Borel sum rule. Our approach enables reliable extraction of the pentaquark properties from the sum rule with good stability in a remarkably wide Borel window. The appearance of its valid window originates from a favorable setup of the correlation functions with the aid of it chirality of the interpolating fields on the analogy of the Weinberg sum rule for the vector currents. Our setup leads to large suppression of the continuum contributions which have spoiled the Borel stability in the previous analyses, and consequently enhances importance of the higher-dimensional contributions of the OPE, which are indispensable for investigating the pentaquark properties. Implementing the OPE analysis up to dimension 15, we find that the sum rules for the chiral-even and odd parts independently give the Theta^{+} mass of 1.68 pm 0.22 GeV with uncertainties of the condensate values. Our sum rule indeed gives rather flat Borel curves almost independent of the continuum thresholds both for the mass and pole residue. Finally, we also discuss possible isolation of the observed states from the KN scattering state on view of chiral symmetry.Comment: 8 pages, 7 figure

    More evidence of localization in the low-lying Dirac spectrum

    Full text link
    We have extended our computation of the inverse participation ratio of low-lying (asqtad) Dirac eigenvectors in quenched SU(3). The scaling dimension of the confining manifold is clearer and very near 3. We have also computed the 2-point correlator which further characterizes the localization.Comment: presented at Lattice2005(Topology and Confinement), Dublin, July 25-30, 2005, 6 pages, 3 figures, to appear in Proceedings of Scienc

    Decomposition of meron configuration of SU(2) gauge field

    Full text link
    For the meron configuration of the SU(2) gauge field in the four dimensional Minkowskii spacetime, the decomposition into an isovector field \bn, isoscalar fields ρ\rho and σ\sigma, and a U(1) gauge field CμC_{\mu} is attained by solving the consistency condition for \bn. The resulting \bn turns out to possess two singular points, behave like a monopole-antimonopole pair and reduce to the conventional hedgehog in a special case. The CμC_{\mu} field also possesses singular points, while ρ\rho and σ\sigma are regular everywhere.Comment: 18 pages, 5 figures, Sec.4 rewritten. 5 refs. adde

    Effective lattice theories for Polyakov loops

    Full text link
    We derive effective actions for SU(2) Polyakov loops using inverse Monte Carlo techniques. In a first approach, we determine the effective couplings by requiring that the effective ensemble reproduces the single-site distribution of the Polyakov loops. The latter is flat below the critical temperature implying that the (untraced) Polyakov loop is distributed uniformly over its target space, the SU(2) group manifold. This allows for an analytic determination of the Binder cumulant and the distribution of the mean-field, which turns out to be approximately Gaussian. In a second approach, we employ novel lattice Schwinger-Dyson equations which reflect the SU(2) x SU(2) invariance of the functional Haar measure. Expanding the effective action in terms of SU(2) group characters makes the numerics sufficiently stable so that we are able to extract a total number of 14 couplings. The resulting action is short-ranged and reproduces the Yang-Mills correlators very well.Comment: 27 pages, 8 figures, v2: method refined, chapter and references adde

    k-strings and baryon vertices in SU(N) gauge theories

    Full text link
    It is pointed out that the sine law for the k-string tension emerges as the critical threshold below which the spatial Z_N symmetry of the static baryon potential is spontaneously broken. This result applies not only to SU(N) gauge theories, but to any gauge system with stable k-strings admitting a baryon vertex made with N sources in the fundamental representation. Some simple examples are worked out.Comment: 4 pages, 4 figures, v2: reference added, v3: comments and references adde

    Absence of quantum-confined Stark effect in GaN quantum disks embedded in (Al,Ga)N nanowires grown by molecular beam epitaxy

    Get PDF
    Several of the key issues of planar (Al,Ga)N-based deep-ultraviolet light emitting diodes could potentially be overcome by utilizing nanowire heterostructures, exhibiting high structural perfection and improved light extraction. Here, we study the spontaneous emission of GaN/(Al,Ga)N nanowire ensembles grown on Si(111) by plasma-assisted molecular beam epitaxy. The nanowires contain single GaN quantum disks embedded in long (Al,Ga)N nanowire segments essential for efficient light extraction. These quantum disks are found to exhibit intense emission at unexpectedly high energies, namely, significantly above the GaN bandgap, and almost independent of the disk thickness. An in-depth investigation of the actual structure and composition of the nanowires reveals a spontaneously formed Al gradient both along and across the nanowire, resulting in a complex core/shell structure with an Al deficient core and an Al rich shell with continuously varying Al content along the entire length of the (Al,Ga)N segment. This compositional change along the nanowire growth axis induces a polarization doping of the shell that results in a degenerate electron gas in the disk, thus screening the built-in electric fields. The high carrier density not only results in the unexpectedly high transition energies, but also in radiative lifetimes depending only weakly on temperature, leading to a comparatively high internal quantum efficiency of the GaN quantum disks up to room temperature.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Nano Letters (2019), copyright (C) American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.nanolett.9b01521, the supporting information is available (free of charge) under the same lin

    Short distance behaviour of the effective string

    Get PDF
    We study the Polyakov loop correlator in the (2+1) dimensional Z_2 gauge model. An algorithm that we have presented recently, allows us to reach high precision results for a large range of distances and temperatures, giving us the opportunity to test predictions of the effective Nambu-Goto string model. Here we focus on the regime of low temperatures and small distances. In contrast to the high temperature, large distance regime, we find that our numerical results are not well described by the two loop-prediction of the Nambu-Goto model. In addition we compare our data with those for the SU(2) and SU(3) gauge models in (2+1) dimensions obtained by other authors. We generalize the result of L\"uscher and Weisz for a boundary term in the interquark potential to the finite temperature case.Comment: 38 pages, 7 figures, version accepted for publication in JHE

    Conservation and divergence of myelin proteome and oligodendrocyte transcriptome profiles between humans and mice

    Get PDF
    Human myelin disorders are commonly studied in mouse models. Since both clades evolutionarily diverged approximately 85 million years ago, it is critical to know to what extent the myelin protein composition has remained similar. Here, we use quantitative proteomics to analyze myelin purified from human white matter and find that the relative abundance of the structural myelin proteins PLP, MBP, CNP, and SEPTIN8 correlates well with that in C57Bl/6N mice. Conversely, multiple other proteins were identified exclusively or predominantly in human or mouse myelin. This is exemplified by peripheral myelin protein 2 (PMP2), which was specific to human central nervous system myelin, while tetraspanin-2 (TSPAN2) and connexin-29 (CX29/GJC3) were confined to mouse myelin. Assessing published scRNA-seq-datasets, human and mouse oligodendrocytes display well-correlating transcriptome profiles but divergent expression of distinct genes, including Pmp2, Tspan2, and Gjc3. A searchable web interface is accessible via www.mpinat.mpg.de/myelin. Species-dependent diversity of oligodendroglial mRNA expression and myelin protein composition can be informative when translating from mouse models to humans

    Global Aspects of Abelian and Center Projections in SU(2) Gauge Theory

    Full text link
    We show that the global aspects of Abelian and center projection of a SU(2) gauge theory on an arbitrary manifold are naturally described in terms of smooth Deligne cohomology. This is achieved through the introduction of a novel type of differential topological structure, called Cho structure. Half integral monopole charges appear naturally in this framework.Comment: 43 pages, no figures, requires AMS font files AMSSYM.DEF and amssym.tex. Completely rewritten, corrected and streamlined versio
    corecore