4 research outputs found

    Imaging Thermal He(+)in Geospace from the Lunar Surface

    Get PDF
    By mass, thermal plasma dominates near-earth space and strongly influences the transport of energy and mass into the earth's atmosphere. It is proposed to play an important role in modifying the strength of space weather storms by its presence in regions of magnetic reconnection in the dayside magnetopause and in the near to mid-magnetotail. Ionospheric-origin thermal plasma also represents the most significant potential loss of atmospheric mass from our planet over geological time. Knowledge of the loss of convected thermal plasma into the solar wind versus its recirculation across high latitudes and through the magnetospheric flanks into the magnetospheric tail will enable determination of the mass balance for this mass-dominant component of the Geospace system and of its influence on global magnetospheric processes that are critical to space weather prediction and hence to the impact of space processes on human technology in space and on Earth. Our proposed concept addresses this basic issue of Geospace dynamics by imaging thermal He(+) ions in extreme ultraviolet light with an instrument on the lunar surface. The concept is derived from the highly successful Extreme Ultraviolet imager (EUV) flown on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. From the lunar surface an advanced EUV imager is anticipated to have much higher sensitivity, lower background noise, and higher communication bandwidth back to Earth. From the near-magnetic equatorial location on the lunar surface, such an imager would be ideally located to follow thermal He(+) ions to high latitudes, into the magnetospheric flanks, and into the magnetotail

    Study of EMIC wave excitation using direct ion measurements

    Get PDF
    With data from Van Allen Probes, we investigate electromagnetic ion cyclotron (EMIC) wave excitation using simultaneously observed ion distributions. Strong He band waves occurred while the spacecraft was moving through an enhanced density region. We extract from helium, oxygen, proton, and electron mass spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ∼2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of linear instability analyses and hybrid simulations are carried out. The simulated waves generally vary as predicted by linear theory. They are more sensitive to the cold O+ concentration than the cold He+ concentration. Increasing the cold O+ concentration weakens the He band waves but enhances the O band waves. Finally, the exact cold ion composition is suggested to be in a range when the simulated wave spectrum best matches the observed one

    Collaborative development of predictive toxicology applications

    Get PDF
    OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals
    corecore