877 research outputs found

    Finite β\beta Effects on Short Wavelength Ion Temperature Gradient Modes

    Full text link
    The electromagnetic effect is studied on the short wavelength branch of the ion temperature gradient mode in the linear regime for the first time using a global gyrokinetic model. The short wavelength ion temperature gradient mode growth rate is found to be reduced in the presence of electromagnetic perturbations at finite plasma β\beta. The effect on real frequency is found to be weak. The threshold value of ηi\eta_i is found to increase for the mode as the magnitude of β\beta is increased. The global mode structure of the short wavelength branch of the ion temperature gradient mode is compared with the conventional branch. The magnetic character of the mode, measured as the ratio of mode average square values of electromagnetic potential to electrostatic potential, is found to increase with increasing values of the plasma β\beta. The mixing length estimate for flux shows that the maximum contribution still comes from the long wavelengths modes. The magnitude of the flux decreases with increasing β\beta.Comment: 23 pages,23 figure

    Numerical Modeling of a Wave Turbine and Estimation of Shaft Work

    Get PDF
    Wave rotors are periodic-flow devices that provide dynamic pressure exchange and efficient energy transfer through internal pressure waves generated due to fast opening and closing of ports. Wave turbines are wave rotors with curved channels that can produce shaft work through change of angular momentum from inlet to exit. In the present work, conservation equations with averaging in the transverse directions are derived for wave turbines, and quasi-one-dimensional model for axial-channel non-steady flow is extended to account for blade curvature effects. The importance of inlet incidence is explained and the duct angle is optimized to minimize incidence loss for a particular boundary condition. Two different techniques are presented for estimating the work transfer between the gas and rotor due to flow turning, based on conservation of angular momentum and of energy. The use of two different methods to estimate the shaft work provides confidence in reporting of work output and confirms internal consistency of the model while it awaits experimental data for validation. The extended wave turbine model is used to simulate the flow in a three-port wave rotor. The work output is calculated for blades with varying curvature, including the straight axial channel as a reference case. The dimensional shaft work is reported for the idealized situation where all loss-generating mechanisms except flow incidence are absent, thus excluding leakage, heat transfer, friction, port opening time, and windage losses. The model developed in the current work can be used to determine the optimal wave turbine designs for experimental investment

    Volumetric Plasma Discharge in a Coaxial Electrode Configuration Using Repetitively Pulsed Nanosecond Discharges

    Get PDF
    Transient plasma discharges can be created in di erent electrode geometries and the use of a coaxial electrodes can assist in initiating ignition at multiple points at the same time to create volumetric ignition. The current study investigates discharge formation in a coaxial electrode in quiescent, atmoshpheric and non-reacting conditions. This is the rst systematic study to understand the behavior of such a discharge as a function of di erent pulse parameters like pulse width (40-110 ns), repetition frequency (1-50 kHz) and input voltage (14-20 kV). Additionally, the polarity of the central electrode was changed between positive and negative. An intensi ed ccd camera was used to visualize the discharge for- mation. The exposure of the camera is set to capture 500 discharges in a single frame. The discharges were found to behave di erently for positive and negative polarity discharges. The positive polarity discharge tends to form a strong arc and spins around the outer cylinder which is con rmed using a high speed camera. The negative polarity discharges form a uniform streamer discharge for most of the pulse parameters. The current study has provided an initial understanding of the dynamics of plasma discharges in a coaxial electrode

    An Exponential Filtering Based Inversion Method for Microwave Imaging

    Get PDF
    In this paper, a new methodology based on the exponential filtering of singular values is adopted to solve the linear ill-posed problem of microwave imaging. This technique filters out the insignificant singular values and works as an efficient low pass filter to eliminate high-frequency noise from the estimated solution. Standard Tikhonov regularization has also proven to be a special case of this method. To show the effectiveness of this approach, various numerical examples of synthetic data and experimental data of Fresnel's Institute are considered for the study. The reconstruction performance of this algorithm is quantified using the mean square error (MSE) and Pearson's correlation coefficient (PCC). Further, the effect of noise on these metrics is presented. The results are compared with the standard Tikhonov regularization method, and it is observed that the proposed reconstruction algorithm provides accurate results compared to the standard Tikhonov regularization method

    Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality

    Get PDF
    A goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor Nuclear Matrix Protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to several classes of osteoporosis drugs with enhanced bone formation compared to wild type (WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation. To address the mechanisms underlying this hyper-anabolic phenotype, we carried out RNA-sequencing and molecular and cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad impact on the transcriptome during osteogenic differentiation, contributing to the expression of over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an enhanced capacity for glycolytic conversion- a key step in bone anabolism. Nmp4-/- cells showed elevated collagen translation and secretion. Expression of matrix genes that contribute to bone material-level mechanical properties were elevated in Nmp4-/- cells, an observation that was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more bone with improvements in intrinsic quality

    Infrared Nonlinear Optics

    Get PDF
    Contains report on one research project.U.S. Air Force - Office of Scientific Research (Contract F49620-84-C-0010

    Venetoclax induces deep hematologic remissions in t(11;14) relapsed/refractory AL amyloidosis

    Get PDF
    Venetoclax is efficacious in relapsed/refractory t(11;14) multiple myeloma, thus warranting investigation in light-chain amyloidosis (AL). This retrospective cohort includes 43 patients with previously treated AL, from 14 centers in the US and Europe. Thirty-one patients harbored t(11;14), 11 did not, and one t(11;14) status was unknown. Patients received a venetoclax-containing regimen for at least one 21- or 28-day cycle; the median prior treatments was three. The hematologic response rate for all patients was 68%; 63% achieved VGPR/CR. t(11;14) patients had higher hematologic response (81% vs. 40%) and higher VGPR/CR rate (78% vs. 30%, odds ratio: 0.12, 95% CI 0.02-0.62) than non-t(11;14) patients. For the unsegregated cohort, median progression-free survival (PFS) was 31.0 months and median OS was not reached (NR). For t(11;14), median PFS was NR and for non-t(11;14) median PFS was 6.7 months (HR: 0.14, 95% CI 0.04-0.53). Multivariate analysis incorporating age, sex, prior lines of therapy, and disease stage suggested a risk reduction for progression or death in t(11;14) patients. Median OS was NR for either subgroup. The organ response rate was 38%; most responders harbored t(11;14). Grade 3 or higher adverse events occurred in 19% with 7% due to infections. These promising results require confirmation in a randomized clinical trial

    Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2.

    Get PDF
    A panel of members of the 2009 International Myeloma Workshop developed guidelines for risk stratification in multiple myeloma. The purpose of risk stratification is not to decide time of therapy but to prognosticate. There is general consensus that risk stratification is applicable to newly diagnosed patients; however, some genetic abnormalities characteristic of poor outcome at diagnosis may suggest poor outcome if only detected at the time of relapse. Thus, in good-risk patients, it is necessary to evaluate for high-risk features at relapse. Although detection of any cytogenetic abnormality is considered to suggest higher-risk disease, the specific abnormalities considered as poor risk are cytogenetically detected chromosomal 13 or 13q deletion, t(4; 14) and del17p, and detection by fluorescence in situ hybridization of t(4; 14), t(14; 16), and del17p. Detection of 13q deletion by fluorescence in situ hybridization only, in absence of other abnormalities, is not considered a high-risk feature. High serum beta(2)-microglobulin level and International Staging System stages II and III, incorporating high beta(2)-microglobulin and low albumin, are considered to predict higher risk disease. There was a consensus that the high-risk features will change in the future, with introduction of other new agents or possibly new combinations. (Blood. 2011; 117(18): 4696-4700

    Impact of post-transplantation maintenance therapy on health-related quality of life in patients with multiple myeloma: data from the Connect® MM Registry

    Get PDF
    Maintenance therapy after autologous stem cell transplantation (ASCT) is recommended for use in multiple myeloma (MM); however, more data are needed on its impact on health-related quality of life (HRQoL). Presented here is an analysis of HRQoL in a Connect MM registry cohort of patients who received ASCT ± maintenance therapy. The Connect MM Registry is one of the earliest and largest, active, observational, prospective US registry of patients with symptomatic newly diagnosed MM. Patients completed the Functional Assessment of Cancer Therapy-MM (FACT-MM) version 4, EuroQol-5D (EQ-5D) questionnaire, and Brief Pain Inventory (BPI) at study entry and quarterly thereafter until death or study discontinuation. Patients in three groups were analyzed: any maintenance therapy (n = 244), lenalidomide-only maintenance therapy (n = 169), and no maintenance therapy (n = 137); any maintenance and lenalidomide-only maintenance groups were not mutually exclusive. There were no significant differences in change from pre-ASCT baseline between any maintenance (P = 0.60) and lenalidomide-only maintenance (P = 0.72) versus no maintenance for the FACT-MM total score. There were also no significant differences in change from pre-ASCT baseline between any maintenance and lenalidomide-only maintenance versus no maintenance for EQ-5D overall index, BPI, FACT-MM Trial Outcomes Index, and myeloma subscale scores. In all three groups, FACT-MM, EQ-5D Index, and BPI scores improved after ASCT; FACT-MM and BPI scores deteriorated at disease progression. These data suggest that post-ASCT any maintenance or lenalidomide-only maintenance does not negatively impact patients' HRQoL. Additional research is needed to verify these findings

    Donor states in modulation-doped Si/SiGe heterostructures

    Full text link
    We present a unified approach for calculating the properties of shallow donors inside or outside heterostructure quantum wells. The method allows us to obtain not only the binding energies of all localized states of any symmetry, but also the energy width of the resonant states which may appear when a localized state becomes degenerate with the continuous quantum well subbands. The approach is non-variational, and we are therefore also able to evaluate the wave functions. This is used to calculate the optical absorption spectrum, which is strongly non-isotropic due to the selection rules. The results obtained from calculations for Si/Si1x_{1-x}Gex_x quantum wells allow us to present the general behavior of the impurity states, as the donor position is varied from the center of the well to deep inside the barrier. The influence on the donor ground state from both the central-cell effect and the strain arising from the lattice mismatch is carefully considered.Comment: 17 pages, 10 figure
    corecore