2 research outputs found

    Kallikrein family proteases KLK6 and KLK7 are potential early detection and diagnostic biomarkers for serous and papillary serous ovarian cancer subtypes.

    Get PDF
    BACKGROUND: Early detection of ovarian cancer remains a challenge due to widespread metastases and a lack of biomarkers for early-stage disease. This study was conducted to identify relevant biomarkers for both laparoscopic and serum diagnostics in ovarian cancer. METHODS: Bioinformatics analysis and expression screening in ovarian cancer cell lines were employed. Selected biomarkers were further validated in bio-specimens of diverse cancer types and ovarian cancer subtypes. For non-invasive detection, biomarker proteins were evaluated in serum samples from ovarian cancer patients. RESULTS: Two kallikrein (KLK) serine protease family members (KLK6 and KLK7) were found to be significantly overexpressed relative to normal controls in most of the ovarian cancer cell lines examined. Overexpression of KLK6 and KLK7 mRNA was specific to ovarian cancer, in particular to serous and papillary serous subtypes. In situ hybridization and histopathology further confirmed significantly elevated levels of KLK6 and KLK7 mRNA and proteins in tissue epithelium and a lack of expression in neighboring stroma. Lastly, KLK6 and KLK7 protein levels were significantly elevated in serum samples from serous and papillary serous subtypes in the early stages of ovarian cancer, and therefore could potentially decrease the high false negative rates found in the same patients with the common ovarian cancer biomarkers human epididymis protein 4 (HE4) and cancer antigen 125 (CA-125). CONCLUSION: KLK6 and KLK7 mRNA and protein overexpression is directly associated with early-stage ovarian tumors and can be measured in patient tissue and serum samples. Assays based on KLK6 and KLK7 expression may provide specific and sensitive information for early detection of ovarian cancer

    Insulin Acts through FOXO3a to Activate Transcription of Plasminogen Activator Inhibitor Type 1

    No full text
    Plasminogen activator inhibitor-1 (PAI-1) is an important regulator of fibrinolysis. PAI-1 levels are elevated in type 2 diabetes, and this elevation correlates with macro- and microvascular complications of diabetes. However, the mechanistic link between insulin and up-regulation of PAI-1 is unclear. Here we demonstrate that overexpression of Forkhead-related transcription factor (Fox)O1, FoxO3a, and FoxC1 augment insulin’s ability to activate the PAI-1 promoter. In addition, insulin treatment promotes the phosphorylation of nuclear and cytoplasmic Fox03a and an increase of cytoplasmic Fox03a. In contrast, insulin treatment led to the accumulation of phospho-Fox01 only in the cytoplasm. Furthermore, insulin also increased the ability of chimeric LexA-FoxO1, LexA-FoxO3a, and LexA-FoxC1 proteins to increase the activity of a LexA reporter, suggesting that the effect of insulin on FoxO3a was direct. Using small interfering RNA to specifically deplete each of the Fox transcription factors tested, we demonstrate that only reduction of FoxO3a inhibits insulin-increased PAI-1-Luc expression and PAI-1 mRNA accumulation. Finally, chromatin immunoprecipitation assays confirm the presence of FoxO3a on the PAI-1 promoter. These results suggest that FoxO3a mediates insulin-increased PAI-1 gene expression
    corecore