8,078 research outputs found

    Monopole Planets and Galaxies

    Full text link
    Spherical clusters of SU(2) BPS monopoles are investigated here. A large class of monopole solutions is found using an abelian approximation, where the clusters are spherically symmetric, although exact solutions cannot have this symmetry precisely. Monopole clusters generalise the Bolognesi magnetic bag solution of the same charge, but they are always larger. Selected density profiles give structures analogous to planets of uniform density, and galaxies with a density decaying as the inverse square of the distance from the centre. The Bolognesi bag itself has features analogous to a black hole, and this analogy between monopole clusters and astrophysical objects with or without black holes in their central region is developed further. It is also shown that certain exact, platonic monopoles of small charge have sizes and other features consistent with what is expected for magnetic bags.Comment: 23 pages. Revised version to appear in Physical Review D. New introduction and conclusions; analogy between monopoles and astrophysical objects developed furthe

    Influence, originality and similarity in directed acyclic graphs

    Get PDF
    We introduce a framework for network analysis based on random walks on directed acyclic graphs where the probability of passing through a given node is the key ingredient. We illustrate its use in evaluating the mutual influence of nodes and discovering seminal papers in a citation network. We further introduce a new similarity metric and test it in a simple personalized recommendation process. This metric's performance is comparable to that of classical similarity metrics, thus further supporting the validity of our framework.Comment: 6 pages, 4 figure

    Four-quark state in QCD

    Get PDF
    The spectra of some 0++ four-quark states, which are composed of \bar qq pairs, are calculated in QCD. The light four-quark states are calculated using the traditional sum rules while four-quark states containing one heavy quark are computed in HQET. For constructing the interpolating currents, different couplings of the color and spin inside the \bar qq pair are taken into account. It is found that the spin and color combination has little effect on the mass of the four-quark states.Comment: 10 pages, 4 ps figures, Late

    Release of mercury halides from KCl denuders in the presence of ozone

    Get PDF
    KCl-coated denuders have become a standard method for measurement of gaseous oxidized mercury, but their performance has not been exhaustively evaluated, especially in field conditions. In this study, KCl-coated and uncoated quartz denuders loaded with HgCl<sub>2</sub> and HgBr<sub>2</sub> lost 29–55% of these compounds, apparently as elemental mercury, when exposed to ozone (range of 6–100 ppb tested). This effect was also observed for denuders loaded with gaseous oxidized mercury at a field site in Nevada (3–37% of oxidized mercury lost). In addition, collection efficiency decreased by 12–30% for denuders exposed to 50 ppb ozone during collection of HgCl<sub>2</sub>. While data presented were obtained from laboratory tests and as such do not exactly simulate field sampling conditions, these results indicate that the KCl denuder oxidized mercury collection method may not be as robust as previously thought. This work highlights needs for further testing of this method, clear identification of gaseous oxidized mercury compounds in the atmosphere, and development of field calibration methods for these compounds

    Ultraviolet HST Observations of the Jet in M87

    Full text link
    We present new ultraviolet photometry of the jet in M87 obtained from HST WFPC2 imaging. We combine these ultraviolet data with previously published photometry for the knots of the jet in radio, optical, and X-ray, and fit three theoretical synchrotron models to the full data set. The synchrotron models consistently overpredict the flux in the ultraviolet when fit over the entire dataset. We show that if the fit is restricted to the radio through ultraviolet data, the synchrotron models can provide a good match to the data. The break frequencies of these fits are much lower than previous estimates. The implied synchrotron lifetimes for the bulk of the emitting population are longer than earlier work, but still much shorter than the estimated kinematic lifetimes of the knots. The observed X-ray flux cannot be successfully explained by the simple synchrotron models that fit the ultraviolet and optical fluxes. We discuss the possible implications of these results for the physical properties of the M87 jet. We also observe increased flux for the HST-1 knot that is consistent with previous results for flaring. This observation fills in a significant gap in the time coverage early in the history of the flare, and therefore sets constraints on the initial brightening of the flare.Comment: 14 pages, 2 figures, Accepted for publication in ApJ, changed lightcurve and caption in Figure

    Release of mercury halides from KCl denuders in the presence of ozone

    Get PDF
    KCl-coated denuders have become a standard method for measurement of gaseous oxidized mercury, but their performance has not been exhaustively evaluated, especially in field conditions. In this study, KCl-coated and uncoated quartz denuders loaded with HgCl<sub>2</sub> and HgBr<sub>2</sub> lost 29–55% of these compounds, apparently as elemental mercury, when exposed to ozone (range of 6–100 ppb tested). This effect was also observed for denuders loaded with gaseous oxidized mercury at a field site in Nevada (3–37% of oxidized mercury lost). In addition, collection efficiency decreased by 12–30% for denuders exposed to 50 ppb ozone during collection of HgCl<sub>2</sub>. While data presented were obtained from laboratory tests and as such do not exactly simulate field sampling conditions, these results indicate that the KCl denuder oxidized mercury collection method may not be as robust as previously thought. This work highlights needs for further testing of this method, clear identification of gaseous oxidized mercury compounds in the atmosphere, and development of field calibration methods for these compounds

    Optimizing Pulsar Timing Arrays to Maximize Gravitational Wave Single Source Detection: a First Cut

    Full text link
    Pulsar Timing Arrays (PTAs) use high accuracy timing of a collection of low timing noise pulsars to search for gravitational waves in the microhertz to nanohertz frequency band. The sensitivity of such a PTA depends on (a) the direction of the gravitational wave source, (b) the timing accuracy of the pulsars in the array and (c) how the available observing time is allocated among those pulsars. Here, we present a simple way to calculate the sensitivity of the PTA as a function of direction of a single GW source, based only on the location and root-mean-square residual of the pulsars in the array. We use this calculation to suggest future strategies for the current North American Nanohertz Observatory for Gravitational Waves (NANOGrav) PTA in its goal of detecting single GW sources. We also investigate the affects of an additional pulsar on the array sensitivity, with the goal of suggesting where PTA pulsar searches might be best directed. We demonstrate that, in the case of single GW sources, if we are interested in maximizing the volume of space to which PTAs are sensitive, there exists a slight advantage to finding a new pulsar near where the array is already most sensitive. Further, the study suggests that more observing time should be dedicated to the already low noise pulsars in order to have the greatest positive effect on the PTA sensitivity. We have made a web-based sensitivity mapping tool available at http://gwastro.psu.edu/ptasm.Comment: 14 pages, 3 figures, accepted by Ap

    Gauged vortices in a background

    Full text link
    We discuss the statistical mechanics of a gas of gauged vortices in the canonical formalism. At critical self-coupling, and for low temperatures, it has been argued that the configuration space for vortex dynamics in each topological class of the abelian Higgs model approximately truncates to a finite-dimensional moduli space with a Kaehler structure. For the case where the vortices live on a 2-sphere, we explain how localisation formulas on the moduli spaces can be used to compute explicitly the partition function of the vortex gas interacting with a background potential. The coefficients of this analytic function provide geometrical data about the Kaehler structures, the simplest of which being their symplectic volume (computed previously by Manton using an alternative argument). We use the partition function to deduce simple results on the thermodynamics of the vortex system; in particular, the average height on the sphere is computed and provides an interesting effective picture of the ground state.Comment: Final version: 22 pages, LaTeX, 1 eps figur

    Ultra-High Energy Cosmic Rays and Stable H-dibaryon

    Get PDF
    It is shown that an instanton induced interaction between quarks produces a very deeply bound H-dibaryon with mass below 2M_N, M_H=1718 MeV. Therefore the H-dibaryon is predicted to be a stable particle. The reaction of photodisintegration of H-dibaryon to 2Λ2\Lambda in during of its penetration into cosmic microwave background will result in a new possible cut-off in the cosmic-ray spectrum. This provides an explanation of ultra-high energy cosmic ray events observed above the GZK cut-off as a result of the strong interaction of high energy H-dibaryons from cosmic rays with nuclei in Earth's atmosphere.Comment: 5 pages, Late
    • …
    corecore