9 research outputs found

    Practical Modeling of Large-Scale Galactic Magnetic Fields: Status and Prospects

    Full text link
    This is a review of the status of efforts to model the large-scale Galactic magnetic field (GMF). Though important for a variety of astrophysical processes, the GMF remains poorly understood despite some interesting new tracers being used in the field. Though we still have too many models that might fit the data, this is not to say that the field has not developed in the last few years. In particular, surveys of polarized dust have given us a new observable that is complementary to the more traditional radio tracers, and a variety of other new tracers and related measurements are becoming available to improve current modeling. This paper reviews: the tracers available; the models that have been studied; what has been learned so far; what the caveats and outstanding issues are; and one opinion of where the most promising future avenues of exploration lie.Comment: Published in Galaxies special issue "New Perspectives on Galactic Magnetism" (with minor formatting differences). v2 fixes some reference

    Helicity in the large-scale Galactic magnetic field

    No full text
    17 pages, 11 figures, Accepted to MNRAS 28 September 2020International audienceWe search for observational signatures of magnetic helicity in data from all-sky radio polarization surveys of the Milky Way Galaxy. Such a detection would help confirm the dynamo origin of the field and may provide new observational constraints for its shape. We compare our observational results to simulated observations for both a simple helical field, and for a more complex field that comes from a solution to the dynamo equation. Our simulated observations show that the large-scale helicity of a magnetic field is reflected in the large-scale structure of the fractional polarization derived from the observed synchrotron radiation and Faraday depth of the diffuse Galactic synchrotron emission. Comparing the models with the observations provides evidence for the presence of a quadrupolar magnetic field with a vertical component that is pointing away from the observer in both hemispheres of the Milky Way Galaxy. Since there is no reason to believe that the Galactic magnetic field is unusual when compared to other galaxies, this result provides further support for the dynamo origin of large-scale magnetic fields in galaxies

    SKA studies of in-situ synchrotron radiation from molecular clouds

    No full text
    Observations of the properties of dense molecular clouds are critical in understanding the process of star-formation. One of the most important, but least understood, is the role of the magnetic fields. We discuss the possibility of using high-resolution, high-sensitivity radio observations with the SKA to measure for the first time the in-situ synchrotron radiation from these molecular clouds. If the cosmic-ray (CR) particles penetrate clouds as expected, then we can measure the B-field strength directly using radio data. So far, this signature has never been detected from the collapsing clouds themselves and would be a unique probe of the magnetic field. Dense cores are typically ∼0:05 pc in size, corresponding to ∼arcsec at ∼kpc distances, and flux density estimates are ∼mJy at 1 GHz. The SKA should be able to readily detect directly, for the first time, along lines-of-sight that are not contaminated by thermal emission or complex foreground/background synchrotron emission. Polarised synchrotron may also be detectable providing additional information about the regular/turbulent fields

    Astro2020 APC White Paper: The need for better tools to design future CMB experiments

    Get PDF
    International audienceThis white paper addresses key challenges for the design of next-decade Cosmic Microwave Background (CMB) experiments, and for assessing their capability to extract cosmological information from CMB polarization. We focus here on the challenges posed by foreground emission, CMB lensing, and instrumental systematics to detect the signal that arises from gravitational waves sourced by inflation and parameterized by rr, at the level of r103r \sim 10^{-3} or lower, as proposed for future observational efforts. We argue that more accurate and robust analysis and simulation tools are required for these experiments to realize their promise. We are optimistic that the capability to simulate the joint impact of foregrounds, CMB lensing, and systematics can be developed to the level necessary to support the design of a space mission at r104r \sim 10^{-4} in a few years. We make the case here for supporting such work. Although ground-based efforts present additional challenges (e.g., atmosphere, ground pickup), which are not addressed here, they would also benefit from these improved simulation capabilities

    TOI-150b and TOI-163b: two transiting hot Jupiters, one eccentric and one inflated, revealed by TESS near and at the edge of the JWST CVZ

    Full text link
    peer reviewedWe present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high- resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package JULIET reveals that TOI-150b is a 1.254± 0.016 {R}_ {J}, massive (2.61^{+0.19}_{-0.12} {M}_ {J}) hot Jupiter in a 5.857-d orbit, while TOI-163b is an inflated (R_ {P} = 1.478^{+0.022}_{-0.029} R_ {J}, M_ {P} = 1.219± 0.11 {M}_ {J}) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit (e=0.262^{+0.045}_{-0.037}), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization - in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter-McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ)

    TOI-150b and TOI-163b: two transiting hot Jupiters, one eccentric and one inflated, revealed by TESS near and at the edge of the JWST CVZ

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package JULIET reveals that TOI-150b is a 1.254±0.016 RJ⁠, massive (⁠2.61+0.19−0.12 MJ⁠) hot Jupiter in a 5.857-d orbit, while TOI-163b is an inflated (⁠RP = 1.478+0.022−0.029RJ⁠, MP = 1.219±0.11MJ⁠) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit (⁠e=0.262+0.045−0.037⁠), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization – in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter–McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ)

    IMAGINE: A comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays

    Get PDF
    International audienceIn this white paper we introduce the IMAGINE Consortium and its scientific background, goals and structure. The purpose of the consortium is to coordinate and facilitate the efforts of a diverse group of researchers in the broad areas of the interstellar medium, Galactic magnetic fields and cosmic rays, and our overarching goal is to develop more comprehensive insights into the structures and roles of interstellar magnetic fields and their interactions with cosmic rays within the context of Galactic astrophysics. The ongoing rapid development of observational and numerical facilities and techniques has resulted in a widely felt need to advance this subject to a qualitatively higher level of self-consistency, depth and rigour. This can only be achieved by the coordinated efforts of experts in diverse areas of astrophysics involved in observational, theoretical and numerical work. We present our view of the present status of this research area, identify its key unsolved problems and suggest a strategy that will underpin our work. The backbone of the consortium is the Interstellar MAGnetic field INference Engine, a publicly available Bayesian platform that employs robust statistical methods to explore the multi-dimensional likelihood space using any number of modular inputs. This tool will be used by the IMAGINE Consortium to develop an interpretation and modelling framework that provides the method, power and flexibility to interfuse information from a variety of observational, theoretical and numerical lines of evidence into a self-consistent and comprehensive picture of the thermal and non-thermal interstellar media. An important innovation is that a consistent understanding of the phenomena that are directly or indirectly influenced by the Galactic magnetic field, such as the deflection of ultra-high energy cosmic rays or extragalactic backgrounds, is made an integral part of the modelling. The IMAGINE Consortium, which is informal by nature and open to new participants, hereby presents a methodological framework for the modelling and understanding of Galactic magnetic fields that is available to all communities whose research relies on a state of the art solution to this problem

    IMAGINE: a comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays

    No full text
    corecore