266 research outputs found

    Q^2-Evolution of Nucleon's Chiral-Odd Twist-3 Structure Function: h_L(x,Q^2)

    Full text link
    We investigate the Q2Q^{2}-evolution of the chiral-odd spin-dependent parton distribution hL(x,Q2)h_{L}(x, Q^{2}) relevant for the polarized Drell-Yan processes. The results are obtained in the leading logarithmic order in the framework of the renormalization group and the standard QCD perturbation theory. We calculate the anomalous dimension matrix for the twist-3 operators for hLh_{L} in the one-loop order. The operator mixing among the relevant twist-3 operators including the operators proportional to the QCD equations of motion is treated properly in a consistent scheme. Implications for future experiments are also discussed.Comment: HUPD-9419, Latex file, 21 pages, 7 figures available on reques

    Termination of the Phase of Quintessence by Gravitational Back-Reaction

    Get PDF
    We study the effects of gravitational back-reaction in models of Quintessence. The effective energy-momentum tensor with which cosmological fluctuations back-react on the background metric will in some cases lead to a termination of the phase of acceleration. The fluctuations we make use of are the perturbations in our present Universe. Their amplitude is normalized by recent measurements of anisotropies in the cosmic microwave background, their slope is taken to be either scale-invariant, or characterized by a slightly blue tilt. In the latter case, we find that the back-reaction effect of fluctuations whose present wavelength is smaller than the Hubble radius but which are stretched beyond the Hubble radius by the accelerated expansion during the era of Quintessence domination can become large. Since the back-reaction effects of these modes oppose the acceleration, back-reaction will lead to a truncation of the period of Quintessence domination. This result impacts on the recent discussions of the potential incompatibility between string theory and Quintessence.Comment: 7 pages a few clarifying comments adde

    Dark Energy and the quietness of the Local Hubble Flow

    Get PDF
    The linearity and quietness of the Local (<10Mpc< 10 Mpc) Hubble Flow (LHF) in view of the very clumpy local universe is a long standing puzzle in standard and in open CDM cosmogony. The question addressed in this paper is whether the antigravity component of the recently discovered dark energy can cool the velocity flow enough to provide a solution to this puzzle. We calculate the growth of matter fluctuations in a flat universe containing a fraction ΩX(t0)\Omega_X(t_0) of dark energy obeying the time independent equation of state pX=wρXp_X = w \rho_X. We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value vrms40km/secv_{rms}\simeq 40km/sec have been ruled out by other observational tests constraining the dark energy parameters ww and ΩX\Omega_X. Therefore despite the claims of recent qualitative studies dark energy with time independent equation of state can not by itself explain the quietness and linearity of the Local Hubble Flow.Comment: 4 pages, 3 figures, accepted in Phys. Rev. D. Minor corrections, one figure adde

    A lattice calculation of the nucleon's spin-dependent structure function g_2 revisited

    Get PDF
    Our previous calculation of the spin-dependent structure function g_2 is revisited. The interest in this structure function is to a great extent motivated by the fact that it receives contributions from twist-two as well as from twist-three operators already in leading order of 1/Q^2 thus offering the unique possibility of directly assessing higher-twist effects. In our former calculation the lattice operators were renormalized perturbatively and mixing with lower-dimensional operators was ignored. However, the twist-three operator which gives rise to the matrix element d_2 mixes non-perturbatively with an operator of lower dimension. Taking this effect into account leads to a considerably smaller value of d_2, which is consistent with the experimental data.Comment: 25 pages, 11 figure

    Response of CdWO4 crystal scintillator for few MeV ions and low energy electrons

    Full text link
    The response of a CdWO4 crystal scintillator to protons, alpha particles, Li, C, O and Ti ions with energies in the range 1 - 10 MeV was measured. The non-proportionality of CdWO4 for low energy electrons (4 - 110 keV) was studied with the Compton Coincidence Technique. The energy dependence of the quenching factors for ions and the relative light yield for low energy electrons was calculated using a semi-empirical approach. Pulse-shape discrimination ability between gamma quanta, protons, alpha particles and ions was investigated.Comment: 20 pages, 8 figs, accepted in Nucl. Instrum. Meth.

    Cosmic Microwave Background Anisotropy with Cosine-Type Quintessence

    Full text link
    We study the Cosmic Microwave Background (CMB) anisotropies produced by cosine-type quintessence models. In our analysis, effects of the adiabatic and isocurvature fluctuations are both taken into account. For purely adiabatic fluctuations with scale invariant spectrum, we obtain a stringent constraint on the model parameters using the CMB data from COBE, BOOMERanG and MAXIMA. Furthermore, it is shown that isocurvature fluctuations have significant effects on the CMB angular power spectrum at low multipoles in some parameter space, which may be detectable in future satellite experiments. Such a signal may be used to test the cosine-type quintessence models.Comment: 21 pages, 9 figure

    New hadrons as ultra-high energy cosmic rays

    Get PDF
    Ultra-high energy cosmic ray (UHECR) protons produced by uniformly distributed astrophysical sources contradict the energy spectrum measured by both the AGASA and HiRes experiments, assuming the small scale clustering of UHECR observed by AGASA is caused by point-like sources. In that case, the small number of sources leads to a sharp exponential cutoff at the energy E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve this cutoff problem. For the first time we discuss the production of such hadrons in proton collisions with infrared/optical photons in astrophysical sources. This production mechanism, in contrast to proton-proton collisions, requires the acceleration of protons only to energies E<10^{21} eV. The diffuse gamma-ray and neutrino fluxes in this model obey all existing experimental limits. We predict large UHE neutrino fluxes well above the sensitivity of the next generation of high-energy neutrino experiments. As an example we study hadrons containing a light bottom squark. These models can be tested by accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR

    When Will Adolescents Tell Someone About Dating Violence Victimization?

    Full text link
    This study examined factors that influence help-seeking among a diverse sample of adolescents who experienced dating violence. A sample of 57 high school students in an urban community reported on the prevalence and characteristics of dating violence in their relationships. Someone observing a dating violence incident and a survivor’s attaching an emotional meaning to the event significantly influenced adolescents to talk to someone. When dating violence occurred in isolation, survivors were more likely to receive no support from others in the aftermath of the incident. Differences between boys’ and girls’ help-seeking and implications for dating violence intervention and prevention programming are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90887/1/Black-Tolman-Callahan-Saunders- Weisz- 2008-When will adolescents tell someone about dating violence VAW.pd

    Early-universe constraints on a Primordial Scaling Field

    Full text link
    In the past years 'quintessence' models have been considered which can produce the accelerated expansion in the universe suggested by recent astronomical observations. One of the key differences between quintessence and a cosmological constant is that the energy density in quintessence, Ωϕ\Omega_\phi, could be a significant fraction of the overall energy even in the early universe, while the cosmological constant will be dynamically relevant only at late times. We use standard Big Bang Nucleosynthesis and the observed abundances of primordial nuclides to put constraints on Ωϕ\Omega_\phi at temperatures near T1MeVT \sim 1MeV. We point out that current experimental data does not support the presence of such a field, providing the strong constraint Ωϕ(MeV)<0.045\Omega_\phi(MeV) < 0.045 at 2σ2\sigma C.L. and strengthening previous results. We also consider the effect a scaling field has on CMB anisotropies using the recent data from Boomerang and DASI, providing the CMB constraint Ωϕ0.39\Omega_\phi \le 0.39 at 2σ2\sigma during the radiation dominated epoch.Comment: 5 pages, 4 figures. The revised version includes the new Boomerang and DASI dat

    Planck-scale quintessence and the physics of structure formation

    Get PDF
    In a recent paper we considered the possibility of a scalar field providing an explanation for the cosmic acceleration. Our model had the interesting properties of attractor-like behavior and having its parameters of O(1) in Planck units. Here we discuss the effect of the field on large scale structure and CMB anisotropies. We show how some versions of our model inspired by "brane" physics have novel features due to the fact that the scalar field has a significant role over a wider range of redshifts than for typical "dark energy" models. One of these features is the additional suppression of the formation of large scale structure, as compared with cosmological constant models. In light of the new pressures being placed on cosmological parameters (in particular H_0) by CMB data, this added suppression allows our "brane" models to give excellent fits to both CMB and large scale structure data.Comment: 18 pages, 12 figures, submitted to PR
    corecore