13 research outputs found

    Earthworm functioning in soil ecosystem services in relation to land use intensity

    Get PDF
    The FP7 EcoFINDERS project aimed to assess the relationship between soil biodiversity and ecosystem service provision. We studied functional responses for earthworms and fungi on soil formation and water regulation under different agricultural land uses representing a range in land use intensity. The aim was to establish and quantify these functional relationships by literature and field studies

    Uncertainty encountered when modelling self-excited thermoacoustic oscillations with artificial neural networks

    No full text
    Artificial neural networks are a popular nonlinear model structure and are known to be able to describe complex nonlinear phenomena. This article investigates the capability of artificial neural networks to serve as a basis for deducing nonlinear low-order models of the dynamics of a laminar flame from a Computational Fluid Dynamics (CFD) simulation. The methodology can be interpreted as an extension of the CFD/system identification approach: a CFD simulation of the flame is perturbed with a broadband, high-amplitude signal and the resulting fluctuations of the global heat release rate and of the reference velocity are recorded. Thereafter, an artificial neural network is identified based on the time series collected. Five data sets that differ in amplitude distribution and length were generated for the present study. Based on each of these data sets, a parameter study was conducted by varying the structure of the artificial neural network. A general fit-value criterion is applied and the 10 artificial neural networks with the highest fit values are selected. Comparing of these 10 artificial neural networks allows to obtain information on the uncertainty encountered. It is found that the methodology allows to capture the forced response of the flame reasonably well. The validation against the forced response, however, depends strongly on the forcing signal used. Therefore, an additional validation criterion is investigated. The artificial neural networks are coupled with a thermoacoustic network model. This allows to model self-excited thermoacoustic oscillations. If the training time series are sufficiently long, this coupled model allows to predict the trend of the root mean square values of fluctuations of the global heat release rate. However, the prediction of the maximal value of the fluctuation amplitude is poor. Another drawback found is that even if very long-time series are available, the behaviour of artificial neural networks cannot be guaranteed. It is concluded that more sophisticated nonlinear low-order models are necessary

    Optical and Thermodynamic Investigations of a Methane- and Hydrogen-Blend-Fueled Large-Bore Engine Using a Fisheye Optical System

    No full text
    The following paper presents thermodynamic and optical investigations of hydrogen-enriched methane combustion, showing the potential of a hydrogen admixture as a means to decarbonize stationary power generation. The optical investigations are carried out through a fisheye optical system directly mounted into the combustion chamber, replacing one exhaust valve. All of the tests were carried out with constant fuel energy producing 16 bar indicated mean effective pressure. The engine under investigation is a port-fueled 4.8 l single-cylinder large-bore research engine. The test series compared the differences between a conventional spark plug and an unscavenged pre-chamber spark plug as an ignition system. The fuel blends under investigation are 5 and 10%V hydrogen mixed with methane and pure natural gas acting as a reference fuel. The thermodynamic results show a beneficial influence of the hydrogen admixture on both ignition systems and for all variations concerning the lean running limit, combustion stability and indicated efficiency, with the most significant influence being visible for the tests using conventional spark plugs. With the unscavenged pre-chamber spark plug and the combustion of the 10%V hydrogen admixture, an increase in the indicated efficiency of 0.8% compared to NG is achievable. The natural chemiluminescence intensity traces were observed to be predominantly influenced by the air–fuel equivalence ratio. This results in a 20% higher intensity for the unscavenged pre-chamber spark plug for the combustion of 10%V hydrogen compared to the conventional spark plug. This is also visible in the evaluations of the flame color derived from the dewarped combustion image series. The investigation of the torch flames also shows a difference in the air–fuel equivalence ratio but not between the different fuels. The results encourage the development of hydrogen-based fuels and the potential to store surplus sustainable energy in the form of hydrogen in existing gas grids

    Optical and Thermodynamic Investigations of a Methane- and Hydrogen-Blend-Fueled Large-Bore Engine Using a Fisheye Optical System

    No full text
    The following paper presents thermodynamic and optical investigations of hydrogen-enriched methane combustion, showing the potential of a hydrogen admixture as a means to decarbonize stationary power generation. The optical investigations are carried out through a fisheye optical system directly mounted into the combustion chamber, replacing one exhaust valve. All of the tests were carried out with constant fuel energy producing 16 bar indicated mean effective pressure. The engine under investigation is a port-fueled 4.8 L single-cylinder large-bore research engine. The test series compared the differences between a conventional spark plug and an unscavenged pre-chamber spark plug as an ignition system. The fuel blends under investigation are 5 and 10%V hydrogen mixed with methane and pure natural gas acting as a reference fuel. The thermodynamic results show a beneficial influence of the hydrogen admixture on both ignition systems and for all variations concerning the lean running limit, combustion stability and indicated efficiency, with the most significant influence being visible for the tests using conventional spark plugs. With the unscavenged pre-chamber spark plug and the combustion of the 10%V hydrogen admixture, an increase in the indicated efficiency of 0.8% compared to NG is achievable. The natural chemiluminescence intensity traces were observed to be predominantly influenced by the air–fuel equivalence ratio. This results in a 20% higher intensity for the unscavenged pre-chamber spark plug for the combustion of 10%V hydrogen compared to the conventional spark plug. This is also visible in the evaluations of the flame color derived from the dewarped combustion image series. The investigation of the torch flames also shows a difference in the air–fuel equivalence ratio but not between the different fuels. The results encourage the development of hydrogen-based fuels and the potential to store surplus sustainable energy in the form of hydrogen in existing gas grids

    Development of an Optical Investigation Method for Diesel and Oxymethylene Ether Spray in a Large-Bore Dual-Fuel Engine Using a Fisheye Optical System

    No full text
    Optical combustion phenomena investigation is a common tool for passenger car and automotive engines. Large-bore engines for stationary and mobile applications, on the other hand, have a lower optical examination density. This is mainly due to the technically more complex design of the optical accesses that have to provide a larger field of view and withstand high mechanical and thermal loads. Nevertheless, an optical investigation of in-cylinder phenomena in large-bore engines is essential to optimize efficient and environmentally friendly combustion processes using new sustainable e-fuels. To realize a simple optical access with maximum observability of the combustion chamber, a fisheye optic for the direct integration into internal combustion engines was developed and used for in-cylinder Mie-scattering investigations of diesel and Oxymethylene Ether (OME3-5) pilot fuel spray of natural gas dual-fuel combustion processes in a MAN 35/44DF single-cylinder research engine. As this special application of a fisheye lens poses some technical challenges, a special image processing procedure is necessary for result evaluation. This innovative postprocessing of the fisheye images comprises a calibration of the fisheye optic and a virtual three-dimensional (3D) re-projection method. Investigations prove the accuracy of the method to be within 2.1 mm. To prove the advantage of the method, optical spray investigations of two different fuels using Mie-scattering in the skipped-fire optical accessible medium-speed large-bore engine are carried out under realistic engine conditions. With the newly developed post-processing procedure, it was possible to derive the mean liquid penetration depth of the in situ investigations. Further, the post-processing includes a rectification of the fisheye images to improve the observability of the pilot fuel spray in the fired combustion engine. The analysis reveals a more compact and dense spray for OME3-5 compared to marine diesel fuel (DMA) as well as about 39% reduced liquid penetration length
    corecore