3 research outputs found

    A review of multi-omics data integration through deep learning approaches for disease diagnosis, prognosis, and treatment

    Get PDF
    Accurate diagnosis is the key to providing prompt and explicit treatment and disease management. The recognized biological method for the molecular diagnosis of infectious pathogens is polymerase chain reaction (PCR). Recently, deep learning approaches are playing a vital role in accurately identifying disease-related genes for diagnosis, prognosis, and treatment. The models reduce the time and cost used by wet-lab experimental procedures. Consequently, sophisticated computational approaches have been developed to facilitate the detection of cancer, a leading cause of death globally, and other complex diseases. In this review, we systematically evaluate the recent trends in multi-omics data analysis based on deep learning techniques and their application in disease prediction. We highlight the current challenges in the field and discuss how advances in deep learning methods and their optimization for application is vital in overcoming them. Ultimately, this review promotes the development of novel deep-learning methodologies for data integration, which is essential for disease detection and treatment

    A Hybrid Prediction Method for Plant lncRNA-Protein Interaction

    No full text
    Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts k-mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on Arabidopsis thaliana and Zea mays datasets. Results from experiments demonstrate PLRPIM’s superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for Arabidopsis thaliana and Zea mays, respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction
    corecore