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Accurate diagnosis is the key to providing prompt and explicit treatment and
disease management. The recognized biological method for the molecular
diagnosis of infectious pathogens is polymerase chain reaction (PCR). Recently,
deep learning approaches are playing a vital role in accurately identifying disease-
related genes for diagnosis, prognosis, and treatment. Themodels reduce the time
and cost used by wet-lab experimental procedures. Consequently, sophisticated
computational approaches have been developed to facilitate the detection of
cancer, a leading cause of death globally, and other complex diseases. In this
review, we systematically evaluate the recent trends in multi-omics data analysis
based on deep learning techniques and their application in disease prediction. We
highlight the current challenges in the field and discuss how advances in deep
learning methods and their optimization for application is vital in overcoming
them. Ultimately, this review promotes the development of novel deep-learning
methodologies for data integration, which is essential for disease detection and
treatment.
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Introduction

The study of complex biological processes is akin to an integrative approach that
combines muti-omics data to examine interrelationships in the biomolecules. Omics data
such as genomics, proteomics, transcriptomics, and metabolomics have widely been utilized
to address biomedical problems including disease diagnosis, prognosis, and therapies
(Subramanian et al., 2020). Particularly, non-coding transcripts, mainly miRNAs and
lncRNAs have been linked to cancer and other complex biological processes such as
immune cell development and disorders (Winkle et al., 2021). Therefore, network
topology information extracted from multi-source data contributes to the identification
of potential associations between biomolecules and diseases (Shi et al., 2022).

Several molecular technologies for wet-lab based studies have identified molecular
genetics of complex disease diagnosis, prognosis and therapeutic implications. The
molecular diagnostics tests are gene panel, gene signature panel, gene expression panel,
and tests that examine DNA, RNA, and proteins (Ishida et al., 2023). These tests are usually
conducted for risk assessment, differential diagnosis, prognosis, and prediction of treatment
response. The results obtained from the wet-lab methods can be integrated with
computational approaches for the interpretation of the results. The integration of

OPEN ACCESS

EDITED BY

Zhi-Ping Liu,
Shandong University, China

REVIEWED BY

Changgeng Feng,
MTC Industries, Inc., United States
Yuyan Zhu,
The First Affiliated Hospital of China
Medical University, China

*CORRESPONDENCE

Jael Sanyanda Wekesa,
jael.wekesa@jkuat.ac.ke

RECEIVED 02 April 2023
ACCEPTED 11 July 2023
PUBLISHED 20 July 2023

CITATION

Wekesa JS and Kimwele M (2023), A
review of multi-omics data integration
through deep learning approaches for
disease diagnosis, prognosis,
and treatment.
Front. Genet. 14:1199087.
doi: 10.3389/fgene.2023.1199087

COPYRIGHT

© 2023 Wekesa and Kimwele. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Review
PUBLISHED 20 July 2023
DOI 10.3389/fgene.2023.1199087

https://www.frontiersin.org/articles/10.3389/fgene.2023.1199087/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1199087/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1199087/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1199087/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1199087&domain=pdf&date_stamp=2023-07-20
mailto:jael.wekesa@jkuat.ac.ke
mailto:jael.wekesa@jkuat.ac.ke
https://doi.org/10.3389/fgene.2023.1199087
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1199087


experimental and modeling techniques provides deeper insights, a
more accurate and dynamic estimate of efficacies of treatments
(Cotner et al., 2023). The integration of the two approaches can be
achieved through the use of in vitro microfluidic devices such as
microfluidic used to mimic vascularization (Cotner et al., 2023).

Through artificial intelligence technologies, imaging, molecular,
and cellular data, the process of disease detection and diagnosis is
fastened. Non-coding RNA (ncRNA) association with diseases has
been discovered to identify potential candidates for biologists to
explore disease mechanisms and subsequently, drug discovery for
treatment. Complex diseases including cardiovascular diseases,
breast and lung cancer are associated with abnormal expression
of ncRNAs such as lncRNAs. Therefore, the computational methods
prioritize the discovery of potential ncRNA-disease associations by
utilizing biological information such as genome location, and tissue
specificity (Xuan, et al., 2019). Identifying these associations
contribute to understanding the pathogenesis, diagnosis, and
treatment of human diseases. Complementarily, differential gene
expression has also been used for disease diagnosis (Zhang et al.,
2022).

The existing methods for predicting associations between
ncRNAs and diseases are broadly classified into network-based
and machine-learning based methods. The network-based
methods utilize heterogeneous networks such as lncRNA-disease,
lncRNA-miRNA and miRNA-disease datasets with known
associations. Conversely, machine-learning based methods predict
potential associations by building models which are trained to
improve accuracy using association data. Sammut et al. (2022)
proposed the integration of clinical, digital pathology, genomic
and transcriptomic profiles to predict breast cancer therapy
response. A study termed multi-omics graph convolutional
network (MOGONET) proposed a supervised classification
framework based on multi-omics data types for biomedical
classification (Wang et al., 2021). A multi-omics integration
model based on graph convolutional network (GCN) was
proposed to analyze and classify cancer subtypes (Li J et al.,
2022). Wang and Chen (2022) predicted miRNA-disease
associations based on lncRNA-miRNA interactions and
convolution networks. Other machine learning based interaction
prediction methods for biomolecules such as lncRNA-protein
interaction include, PLRPIM, DRPLPI, GPLPI, and GAE-LGA
(Wekesa et al., 2019; Wekesa et al., 2020a; Wekesa et al., 2020b;
Gao et al., 2022; Yu H et al., 2022). Some researchers have also
developed multi-omics integration tools such as CustOmics that
implements deep learning to integrate high dimensional and
heterogeneous data (Benkirane et al., 2023).

The main objective of this article is to explore the application of
deep learning in disease diagnosis, prognosis and therapies. We
examine deep learning architectures such as convolutional neural
networks (CNN), feed forward networks, and recurrent neural
networks (RNN). Additionally, the advantages, disadvantages and
obstacles faced by deep learning-based methods and
recommendations on how to overcome them are included in the
review. Selection of methods and tools in this review is based on the
integration of multiple datasets and availability of the method in a
public repository or as a tool or package. The knowledge gaps in the
integration of multi-omics data through deep learning approaches
include incompleteness of molecular interactome, challenges in

identifying genes within genetic association regions and limited
applications to human diseases. Moreover, limited model
interpretability is also a challenge that limits adoption of the
models due to complex prediction mechanism of the deep
learning models. This article is the first to systematically compare
the performance of deep learning algorithms in disease diagnosis,
prognosis and treatment. In the following sections, the database
resources of the multi-omics datasets are provided, their description
and the references. Further, we provide a detailed account of how the
datasets are used in the deep and machine learning algorithms.

Multi-omics data integration,
interpretation and disease prediction

Database resources

To understand the roles of ncRNAs to diseases, determining
their interactions is the key. Several disease related ncRNAs
databases have been developed. The databases are composed of a
collection and integration of resources focusing on circRNAs as
disease biomarkers, and lncRNAs/mRNAs/miRNAs interactions
with diseases. The ncRNA related databases, their description
and URL links are listed in Table 1.

Interpretation of multi-omics datasets

Multi-omics data gives multiple views of a problem that are
aggregated into context (Maghsoudi et al., 2022). Performing
representation learning to explore information from multiple
views is a challenging problem. The machine and deep learning
models rely on feature information extracted from unlabeled
data. Several tools have been proposed to facilitate interpretation
of molecular features derived from multi-omics datasets that
contain the biology of diseases. The tools incorporate concepts
such as loss functions meant for obtaining puissant feature
learning and prediction ability. For instance, a meta-learning
deep learning method termed DeepLIFT was recently proposed
that implements cox hazard loss to improve performance,
intelligibility and interpretability of the model (Cho et al.,
2023). Meta-learning, a learning-to-learn method, based on
back propagation and cox hazard loss trained on
transcriptomics, proteomics, and clinical datasets showed
better performance than direct and transfer learning-based
models.

Contrastive learning via data augmentation and other
strategies and frameworks have attracted attention vastly in
multi-omics data analysis. Contrastive learning is a self-
supervised instance-level discriminative method that learns
latent information with the aim of pulling the different views
closer (Cui et al., 2023). Adapting algorithms that incorporate
contrastive loss to evaluate cross-modal associations between
datasets is paramount in understanding genetic modalities in the
multi-omics data. Additionally, deep neural network algorithms
improve the learned representations through contrastive
masking to model nonlinear relationships. Many researchers
have been contrasting high-dimensional features in the
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attempt to explore discriminative information from multiple
views. However, low-dimensional representation is ignored
albeit the significance of the information in the learned
representation on downstream tasks. Li et al. proposed a
method, regularized and hybrid Multiview coding (RHMC) a
variant of contrastive learning method for comprehensive
modeling of consistent information between multiple views (Li
X et al., 2022). The method obtrudes global alignment on the
learned representations in the latent space by computing the
probability distribution of the views using the Wasserstein
distance-based view alignment regularization. Therefore,
contrastive learning learns high-quality representations and
effectively supports multi-omics integration (Yang et al., 2022).

Comprehensive understanding of human complex diseases
requires the analysis of multi-omics data reciprocally with
clinical information. Based on the analysis, useful insights into
the cellular functions are derived. The integration helps to
understand the interplay of the biomolecules and in the
assessment of the information from the omics data. Further, it
improves prognostic and predictive accuracies hence better
treatment and prevention of the diseases (Subramanian, et al.,
2020). The gap between genotype and phenotype is traversed
through the flow of information from one omics level to the
other. However, challenges associated with data integration arise
from complexity of the data and difficulty in the interpretation of
the analysis results. There are platforms such as GraphOmics for
exploring and integrating multiple omics datasets and also used
for hypothesis generation (Wandy and Daly, 2021). The goal of
the platforms is to uncover associations between unknown
entities not captured in the knowledge base and methods such
as correlation analysis and other analysis methods. A hybrid
multi-omics network from longitudinal multi-omics data was
proposed to facilitate the interpretation of the data. The method
provides interpretation guidelines to explore network generated
from multi-omics data to highlight inter and intra omics
mechanisms and interactions (Bodein et al., 2021). Figure 1
below is an illustration of the data multimodalities and how
the machine learning prediction models are used to predict
diseases.

Prediction methods based on deep learning

Disease diagnosis is primarily based on the patient history and
physical examination done by health experts. It is often a difficult
task due to the complexity of the disease mechanism and ambiguity
of the symptoms that require proper diagnostic procedures.
Moreover, a series of medical tests are needed which are
expensive and because of human error patients may be
misdiagnosed. Therefore, artificial intelligence develops
algorithms and techniques for correct disease diagnosis,
prognosis, and treatment. Machine learning (ML) is a subset of
artificial intelligence that is based on mathematical and statistical
approaches. The ML based diagnosis methods are developed based
on healthcare data such as X-ray, MRI and tabular data with
patients’ conditions, age, gender, body mass index (BMI) and
blood pressure (BP). Other features used for prediction include
genetic features and interaction network-based features. The
features are fed into the algorithm which is able to generalize the
knowledge based on a pattern observed from a group of samples.
Generally, the immense growth of ML over the years is attributed to
the advancement of technology and availability of data generated by
academics and practitioners (Ahsan et al., 2022).

Deep learning models are effective for decoding pathological
images, interaction and prognosis prediction. Several machine and
deep learning algorithms have been used for breast cancer detection
namely support vector machine (SVM), CNN, bidirectional RNN
(BiRNN) and naïve bayes (Vaka et al., 2020). It has been proven that
the expression levels of ncRNAs are altered in cancer cells or tumor
tissues. Therefore, research on the expression of ncRNAs under
pathological conditions is valuable for identification of novel
biomarkers and target therapeutics. A biomarker is a molecule
that is relatively easy to detect and offers credible information on
diagnosis, prognosis and other disease parameters (Volovat et al.,
2020). The implementation of the models is done through platforms
such as Tensorflow, PyTorch, and Caffe (Shoaib et al., 2023).
Tensorflow and PyTorch are open-source libraries for
computation via creation of dataflow graphs and distributed
training respectively. Caffe is an open-source deep learning
framework for video and image classification.

TABLE 1 Multi-omics ncRNA-disease data repositories.

Data repository Interactions Description URL

lncRNADisease Bao et al.,
(2018)

lncRNA and disease This database integrates experimentally supported
lncRNA-disease associations

http://www.cuilab.cn/
lncrnadisease

Lnc2Cancer 3.0. Gao et al,
(2020)

lncRNA, cirRNA, and disease This is a manually curated database with lncRNA, circRNA,
and human cancer associations

http://www.bio-bigdata.net/
lnc2cancer

MNDR Ning et al., (2021) ncRNA (miRNA, lncRNA, circRNA, piRNA,
snoRNA), disease

The database contains experimental and predicted
mammalian ncRNA-disease associations

http://www.rna-society.org/
mndr

circRNADisease Zhao et al.,
(2018)

circRNA and disease This is a manually curated database of experimentally
supported circRNA and disease associations

http://cgga.org.cn:9091/
circRNADisease/

CircR2Disease Fan et al.,
(2021)

circRNAs and diseases A Web Server for experimentally validated
circRNA–disease associations and its application

https://bio.tools/circR2Disease

LncR2metasta Zhang et al.,
(2021)

lncRNAs and cancer A manually curated database, aims at providing a
comprehensive resource of lncRNA deregulation in various
cancer metastatic events

http://lncr2metasta.wchoda.
com/
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Yu Z et al. (2022) published a review paper on popular deep
learning algorithms for disease prediction. One of the popularly
used deep learning model is CNN which is mostly suitable for
learning image features. The model combines local receptive field,
shared weight and down sampling. Receptive field in the
convolutional kernel extracts visual features such as edges and
corners. Shared weight feature is realized through scanning of the
images by the convolution kernel using the same weight. One
limitation of CNN is large amount of labeled data required to train
the model. In a study conducted by Khan et al. deep CNN model
was trained and used to classify normal and abnormal breast
tissue (Heenaye-Mamode Khan et al., 2021). Digital images and
health records of women were used to train and test the proposed
model. The model predicted biopsy malignancy and differentiated
normal from abnormal screening examinations. The features
extracted include binding site, morphological and genetic
features. Other deep learning models include LSTM for
learning sequence-based features, stacked autoencoder for
dimensionality reduction and classification and deep belief
network. Factorization machine deep learning (FMDNN) was
proposed to solve the problems of DNN (Yu et al., 2021). This
model learns low and high order feature interactions.
Factorization machine (FM) eliminates pre-training and
facilitates an end-to-end training of the neural network. An
FM based neural network termed DeepFM was proposed to
predict the presence or absence of hepatitis (Yu et al., 2021).

Graph neural networks (GNNs) operate on graph-structured
data and have successfully been used in network biology
applications. Hernández-Lorenzo et al. (2022) proposed an
Alzheimer’s disease prediction model through Graph Neural
Networks. The study presented a genotype-to-phenotype
prediction pipeline that uses GNNs in combination with protein-
protein Interaction (PPI) and functional biological networks. Huang
and Chung (2022) proposed edge-variational graph convolutional
networks (EV-GCN) for prediction of Autism Spectrum Disorder,
Alzheimer’s disease and ocular disease. Further, Monte-Carlo edge
dropout uncertainty estimation was implemented to estimate the
predictive uncertainty related to the constructed graph. EV-GCN, a
population-based disease analysis method uses multi-modal medical
data to evaluate the proposed method. In another recent study, a
weighted-link GNN algorithm that combined graph auto-encoder
and graph convolutional network was put forward (Cheng et al.,
2023). The algorithm produced the best classification performance
in the lung cancer knowledge classification compared to other state-
of-the-art methods. From the highlighted GNN based methods, it is
observed that the algorithms extract meaningful features which
enable them to achieve superior performance. The methods are
knowledge guided such that they inject knowledge from a graph
structure medical ontology into deep models via attention
mechanisms. Despite the advantages of GNNs, their limitations
include scalability such that it is difficult to scale the edges of graphs
based on the type and relations. Table 2 consists of recently

FIGURE 1
The data modalities used by machine learning (ML) prediction models for diagnosis, prognosis and treatment.
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proposed prediction models, the datasets used and the task
performed by the models.

Prediction methods based on biological
molecular network

The association betweenmulti-omics data, and diseases has been
extensively explored by researchers. It has been established that
multi-omics data can effectively predict the diagnosis, prognosis,
and treatment of diseases (Pan et al., 2022). The application of
computational biology tools to integrate omics data to investigate
disease pathogenesis is known as network medicine. The analytical
methods in network medicine based on molecular networks exploit
protein-protein interaction, correlation-based networks, gene
regulatory networks and Bayesian networks (Silverman et al.,
2020). The network-based approaches exploit graph-theoretic
(random walks, network propagation and path search), machine
and deep learning. Analyzing topology of the network nodes
uncovers specificities and similarities in how genes play
regulatory roles and draws insights on diseases similarities.

Disease associated genes prediction can be accomplished
through graph-theoretic algorithms, machine learning algorithms
and their integration. This task is based on the assumption that
diseases linked to the same genes are closely located in a molecular
network such as PPI, co-expression networks and gene regulatory
networks. PPI is the regularly used network among the three, this is
attributed to the factuality that interacting proteins perform
common biological functions. While gene expression refers to the
process of converting genetic information into functional RNA or
protein, gene regulation is the process of controlling the expression
of genes. In a gene regulatory network, the edges represent not only
interaction but also other biological processes such as reaction,
activation or inhibition. A study by Hasankhani et al. (2021)
revealed that through the integration of co-expression networks
based on the hub genes and PPI networks, key hub-high traffic genes
were identified as potential therapeutic targets for COVID-19

pandemic. In 2022, a study was done to predict gastric cancer
diagnosis, prognosis, and drug repurposing based on gene
expression signatures. The study used gene expression datasets to
predict novel diagnostic candidates. Recently, co-expression
network analysis of down syndrome was conducted to explore
cell types associated with abnormal brain development (Seol
et al., 2023). Through cell-type enrichment analysis on gene
expression modules, gene modules associated with specific brain
types were identified and functional annotation provided insights
into the role of specific cell types in biological processes.

Wu et al. (2013) proposed qNABpredict, a taxonomy-agnostic
model that predicts content of the nucleic acid-binding residues. The
tool is designed to predict details of protein-NA (nucleic acid)
interactions for large protein families and proteomes. Interactions
between proteins and nucleic acids from protein sequences are
critical in a wide range of cellular functions such as gene
expression and regulation. Discovery of biomarkers through
differential expression and molecular associations is a focal point
of research. Technological advancements in molecular analysis have
enabled identification of a large number of candidate biomarkers for
complex diseases. Biomarkers can be used to determine disease stage
in disease diagnosis. Additionally, they are used to assess the efficacy
and monitor the response to new drugs or therapeutic intervention.

Emerging technologies and case studies

The profound advancements in technology assist in the
development of decision support systems that provide accurate
and reliable evidence-based solutions in different domains such
as finance and medicine. In this section, we investigate prediction
methods based on different types of diseases including breast cancer,
brain cancer and hybrid disease detection. We examine emerging
technologies such as blockchain, internet of things (IoTs), their
evolution and integration with deep learning. Blockchain is a
technology designed to offer high-level security, transparency and
tamper proof data management for applications. It uses

TABLE 2 Deep learning-based disease prediction methods.

Model Dataset Sample size Task/Use-case References

DPGNI Gene network 1,728 diseases Disease Classification Mi, et al. (2019)

MIDDM Infectious diseases medical records 20,620 cases, 7 infectious diseases Multi- disease
Classification

Wang M et al. (2022)

HCNN Medical images 954 normal and disease sub-types Disease Classification An, et al. (2021)

DOCTOR Chest radiographs, eye-gaze
coordinates

1083 chest radiographs Disease Classification Watanabe, et al. (2022)

DTLC Chest CT 852 infected patients images Disease classification Pathak, et al. (2022)

MAGCN lncRNA, miRNA, disease 10,465 LMIs and 11,253 MDAs Interaction prediction Wang and Chen (2022)

SGAEMDA miRNA, disease 5,430 associations of 383 complex diseases and 495 miRNAs Interaction prediction Wang S et al. (2022)

MVIFMDA miRNA, disease 12,446 associations of 853 miRNAs and 591 diseases Interaction prediction Xie X et al. (2022)

IGNSCDA circRNA, disease 612 associations of 533 circRNAs and 89 diseases Interaction prediction Lan, et al. (2021)

MNNMDA Microbe, disease 9,660 associations of 2,546 microbes and 537 diseases Interaction prediction Liu Z et al. (2023)
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cryptographic signature that links blocks in the chain and generate
unbroken chain of records. On the other hand, IoT based platforms
are based on intelligent hardware, deep learning and mobile
terminals to develop applications. By integrating blockchain
technology and machine/deep learning, developed applications
are able to extract valuable insights from data while preserving
privacy. Figure 2 below shows the data sets, integration of deep
learning with emerging technologies such as blockchain and IoT and
their application in computational biology.

Advanced technologies for breast cancer
detection

Breast cancer is a major cause of mortality worldwide. Studies
have shown that it emerges from abnormally replicated breast
cells. Detection methods include mammography, CT, MRI,
ultrasound and biopsy. Machine and deep learning models
have been proposed to aid in the detection of the malignant
breast cancer such as inflammatory, invasive among others.
Internet medical of things (IoMT) is a recently proposed
method for detection and management of breast cancer. The
method was implemented through gated recurrent units (GRU) a
recurrent neural network model (Aldhyani et al., 2023). The
method employs blockchain technology using advanced
encryption standard (AES) cryptosystem. A cloud health
resource-sharing model based on consensus blockchain
technology is a platform developed to perform breast tumor
diagnosis (Zhu et al., 2019).

Advanced technologies for brain cancer
detection

Imaging technology provides an interior anatomy of patients
that assist in the detection of abnormal tissues. Brain tumor, causes
impairment and death in both men and women. Diagnosis of brain
cancer is usually based on studying MRI scans which is laborious,
error-prone and time-consuming. Therefore, deep learning models
in conjunction with IoT and blockchain technology offer fast,
secure, and precise prediction mechanism. Several authors have
proposed classifiers that utilize the two technologies. An adaptive
neuro-fuzzy system classifier for detecting brain tumor implemented
with IoT through simulations was developed by (Sandya et al., 2023).
A deep learning method for brain tumor detection based on

blockchain technology was proposed to predict using MRI
images (Mohammad et al., 2023).

Advanced deep learning-based models for
hybrid disease detection

Hybrid disease detection systems are models that diagnose
multiple ailments. A blockchain-based multi-diagnosis deep
learning model for disease classification was recently proposed to
provide security of data shared in the healthcare sector (Rahal et al.,
2023). The approach combines data from multiple sources for
disease diagnosis by training and testing deep learning models on
breast cancer, lung cancer and diabetes datasets. Another study
based on federated learning, blockchain technology and deep
learning models was proposed for classification of four
respiratory diseases, COVID-19, Pneumonia, Tuberculosis, and
Lung Opacity (Noman et al., 2023). The model is a web-based
real-time classification tool.

Experimental evaluation

This article is a qualitative research comprising of recent studies
on the prediction of complex disease diagnosis, prognosis and
treatment using multi-omics data and emerging technologies. To
effectively measure the prediction models performance, cross
validation system which circumvents cross-section prejudice is
applied. Five-fold and ten-fold cross-validation techniques are
most commonly used to assess classifiers performance. In the
cross-validation techniques, the dataset is randomly fragmented
into training and testing sets. To quantitatively appraise the
efficacy of the classifiers, the evaluation metrics include accuracy,
Mathew’s correlation coefficient (MCC), precision, recall, specificity
and area under the curve (AUC). Accuracy measures the ratio of
correct predictions over all the samples. Precision indicates the ratio
of correctly predicted positive samples over all the predicted positive
samples. Recall indicates the ratio of correctly predicted positive
samples over all the positive samples.

Comparison of models

The number of publications on the computational prediction of
diseases has steadily increased over time. The authors main aim has

FIGURE 2
Application of deep learning with current technologies in computational biology.
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been to improve the performance through different approached
including dimensionality reduction and feature selection
mechanisms. Figure 3 illustrates a summary of the number of
publications between 2013 and 2023, the information is obtained
from Scopus data. Table 3 represents the studies’ findings and the
respective references. The accuracies obtained by the methods is
notably high ranging between 76% and 99%. Particularly, the
performance of DRAE (Menagadevi et al., 2023) recorded an
accuracy of 98%. The high performance is attributed to the pre-
processing techniques implemented, modified optimal curvelet
thresholding and Octagon histogram equalization. The two
techniques removed noise from the datasets hence Then residual
autoencoder architecture is used for extracting features and SVM
implemented for classification. Moreover, it can be observed in
Table 3 that the deep learning models performance were positively
influenced by the optimization and feature normalization
mechanisms they implemented. A checkmark in the third

column indicates whether the model was designed to address the
specific challenge. In the fourth column, the checkmark indicates
implementation of heterogeneous or hybrid machine learning for
disease prediction.

Leveraging multi-omics data for disease
related insights

Genome, transcriptome, proteome and other omics data
collaborate to perform complex cellular processes. Some
researchers have proven that multi-omics datasets help to unravel
the molecular mechanisms. The cancer genome atlas (TCGA) data
identify distinct molecular subtypes of cancer with the aim of
improving diagnostic methods, treatment standards, and finally
to prevent cancer (Tomczak, et al., 2015). The data combines
DNA methylation, mRNA/microRNA expression and proteomics

FIGURE 3
Number of publications on disease diagnosis based on machine-learning algorithms.

TABLE 3 Comparison of prediction methods.

Method Description Missing
data

Het.
ML

References

DCNN A deep CNN with self-attention implemented to predict heart disease ✓ Arooj et al. (2022)

DPMLT Ensemble machine learning model for multi-disease predicting ✓ ✓ Park et al. (2021)

NN with
VGG16

A deep learning model for Pneumonia prediction from Chest X-Ray Images using VGG-16 and
Neural Networks

Sharma and Guleria
(2023)

PDLM Classification of breast cancer using pre-trained deep learning ✓ Kadry et al. (2023)

MNC-Net A multi-task graph structure learning based on node clustering for early Parkinson’s disease
diagnosis

✓ Huang et al. (2023)

Eadn Autoencoder based method for detection of Parkinson’s disease ✓ ✓ Rao (2023)

DRAE Deep residual autoencoder for Alzheimer disease prediction ✓ Menagadevi et al.
(2023)

SCAN Bayesian variational autoencoder for breast cancer prognosis prediction ✓ ✓ Hsu and Lin (2023)

RGNN Recurrent neural network and graph neural network for next-period (medical event prediction)
prescription classification

✓ Liu et al. (2020)
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data (reverse-phase protein arrays). The analysis of the datasets
output a comprehensive catalog of genetic and epigenetic drivers of
cancer e.g., breast cancer subtypes (Koboldt, et al., 2012).

Aside from disease diagnosis, multi-omics data has been
effectively used for precise cancer treatment. Chai et al. (2021)
integrated multi-omics data for accurate cancer prognosis
prediction. The method implemented denoising autoencoder for
robust representation of multi-omics data to estimate patient’s risk
of cancer through the Cox proportional hazard model. Another
model named MSDLM was recently proposed to predict prognosis
and therapy response in colorectal cancer (Foersch, et al., 2023). The
model was developed based on cellular patterns of anti-tumor
immunity and was determined to outperform clinical, molecular
and immune cell-based parameters.

The biggest challenge in training models is data quality.
Particularly in the application of deep learning models in disease
related predictions, high quality medical data is of great significance.
However, the quality of medical data is of low quality despite the
availability of the data in large quantity. The problems include, the
need for medical expertise to label samples, abnormal features and
mismatch between the training and actual data samples. To
circumvent the challenges of low amount and quality of image,
speech and text data, techniques like up sampling, Fourier transform
and augmentation are used to improve the quality. Moreover,
attention mechanisms are implemented to improve
representation ability and interpretability.

Feature selection entails the selection of the most relevant
features during model construction. Some algorithms have built-
in feature selection methods and penalization mechanisms for
reducing overfitting while others rely on the features fed into
them. An exhaustive search strategy is usually implemented on
the feature subsets to identify the most optimal features suitable for
the task. The search strategies include filter methods such as Chi-
square and linear discriminant, wrapper methods such as genetic
algorithms and embedded methods such as least absolute shrinkage
and selection operator (LASSO) and ridge regression. The benefits of
feature selection include reduced model training time, increased
performance and Feature selection is also a means of achieving
dimensionality reduction which has advantages such as complexity
reduction. Models that rely on knowledge graph information with
historical information and domain knowledge have been found to
have high accuracy on diagnosis prediction tasks. To leverage the
knowledge graphs, an end-to-end robust solution can be achieved
through the features of GNN algorithm. Also, Huang et al. proposed
combining graph structure learning and multi-task representation
learning through multi-task node cluster to address the challenge of
model interpretability (Huang et al., 2023).

Challenges, recommendations and future
prospects

The main challenge in disease diagnosis, prognosis, and
treatment is medical uncertainty which affects both human
(physicians) and deep learning models implementation in
healthcare. This is a scenario whereby, there is no definite
solution to a symptom presented by a patient for diagnosis. In
this regard, mathematical and statistical models have been used to

describe the mechanisms and dynamics of biological experimental
findings and the degree of uncertainty quantified. Several deep
learning models that quantify uncertainty in the classification
results have been proposed including (Arco et al., 2023; Cifci
2023; Ren et al., 2023). Therefore, collaboration between
computational biology experts who develop the prediction
models with medical professionals to test the proposed models in
real clinical scenarios is highly recommended. Thus, findings from
the computational prediction models should be verified using wet-
lab experiments and extensive pathway analysis. To overcome the
shortcomings of the computational and biological experiments,
firstly, the quantitative experimental methods can be used to
measure dynamics of the diseases in vitro. Then, the wet-lab
studies and data generated from them can be integrated with the
mathematical modeling approaches for more accurate and context-
based interpretation of the results.

Deep learning algorithms have been the most promising
computational models for multi-omics data integration analysis.
The models have achieved great success due to their superior feature
representation capability and the end-to-end training paradigm.
Generating correlations between the omics data is of utmost
significant (Gong et al., 2023). Other challenges encountered in
the algorithm implementation include overfitting, inequality, poor
interpretability, privacy protection, and lack of reliable validation.
To address model overfitting, feature selection and deep learning
based multimodal feature fusion has successfully been implemented.
Moreover, legal and ethical challenges in the implementation of
deep learning models in healthcare is a major problem due to the use
of personal information which can cause harm to the people
involved through exposing them to discrimination etc. The
different ways of ensuring protection of data are ethical
guidelines, transparency and explainability, robustness, privacy,
and accountability. Practically, blockchain technologies have been
proposed to deal with the privacy protection as a means of boosting
trust in technology. To solve reliable validation techniques
challenge, methods such as cross-validation a resampling
technique is used. To further enhance the performance of deep
learning algorithms, deeper and wider neural networks with many
layers and channels is crucial to cater for the depth of representation.

Attention is an algorithm that suppresses irrelevant information
and accentuates relevant information. Adding attention
mechanisms to neural network algorithms such as CNN
enhances network performance and it is also used for
dimensionality reduction. It is implemented during feature
extraction process. Attention mechanisms dynamically assigns
weights to the features to minimize the effect of less important
features. The variants of attention mechanisms are self-attention
(Arooj et al., 2022), graph attention (Wekesa et al., 2020a),
coordinate attention (Xie C et al., 2022), dimensionality
reduction attention (Wang and Wang, 2022), residual attention
(Zhao et al., 2022), and spatial attention. Self-attention enhances
information content by focusing on a single sequence to compute
the sequence representation. Coordinate attention mechanism
embeds position/location information in the feature map to
enable the network to focus on important regions.
Dimensionality reduction attention mechanism aims at limiting
skewness error during feature extraction. Combining the
attention mechanisms such as spatial and residual significantly
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improves the algorithm performance through broadening the
representation power of the baseline network in a classification
problem.

Researchers are developing learning paradigms such as meta-
learning categorized as metric (similarity based on distance metrics),
model (internal and external memory) and optimization (optimizing
model parameters for fast learning). Meta-learning helps to solve data
scarcity problems in disease diagnosis (Liu H et al., 2023). Multi-
diagnosis methods are based on the three dimensions of meta-
learning. Since deep learning algorithms are applicable to data-
intensive learning tasks, integration of knowledge representation
and reasoning in the development of complex systems is an area
that is yet to be widely explored. Knowledge representation and
reasoning is applicable in medical robotics and other domains. For
instance, Ontology for Robotic Orthopedic Surgery (OROSU) is a
robot used to perform surgical procedures (Gonçalves and Torres,
2015). Such systems require ethical procedures to be adhered to for
their adoption to be acceptable in practice.

Conclusion

Complex molecular networks are involved in human diseases.
To fully elucidate the molecular system and understand biological
processes involved in diseases, the dynamic dimensions of biological
information is critical. This paper presents a survey on algorithmic
frameworks developed to unravel the significance of multi-omics in
disease classification, diagnosis, prognosis and treatment. Diseases
that have been explored include cancer, Alzheimer and down
syndrome among others. We provide a comprehensive summary
of the databases of omics data and discus the challenges facing the
implementation. Our review found that deep learning models
achieve the level of accuracy in medical diagnostics prognosis

similar to healthcare professionals. The challenges of deep
learning such as complexity in the models need to be addressed
to improve the quality and interpretability of future studies.
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