60 research outputs found

    Improving EIA for roads at the landscape-scale

    Get PDF
    Wildlife populations are increasingly threatened by the expansion of road networks and built-up areas worldwide. However, ecological effects of roads and traffic at the level of landscape functions, communities, and ecosystems are complex and potentially unexpected. They are usually not well studied and not considered in environmental impact assessments (EIAs) and road planning. Major efforts are necessary to improve the quality of project‐specific EIAs, landscape‐scale cumulative effect assessments (CEA), strategic environmental assessments (SEA), road planning, and land‐use planning. I draw 12 lessons from recent advances in Road Ecology science that are important for EIA at the landscape-scale

    TransdisziplinaritÀt: Problemorientierung ohne Methodenzwang

    Get PDF
    In order to distinguish transdisciplinary research projects from inter- and multi-disciplinary ones, we define five types of scientific problems. On this basis, we propose a definition of transdisciplinarity which comprises two parts: First, transdisciplinary research deals with scientific problems derived from "real-world problems" which do not fit into the system of scientific disciplines (for instance, environmental problems). Second, transdisciplinary research is characterized by a four-stage process of problem solving: (1) transition from the real-world problem to a scientific comprehension of this problem and identification of main questions; (2) subdivision of the entire problem into sub-problems with well-defined interrelations; (3) free choice of scientific methods adequate for each of the sub-problems, including transfer of methods from their original field of application to the new context (trans-disciplinary use of methods); (4) re-combination of the solutions obtained for the subproblems to an answer to the entire problem. Some recent projects of environmental research are presented as examples to illustrate this understanding of transdisciplinarity. Teamwork and application-orientated results turn out to be neither specific nor necessary for transdisciplinary research. Finally, several conclusions are drawn concerning research practice and higher education policy. In order to encourage transdisciplinary research and to overcome the structural obstacles of the present research system, institutional changes seem inevitable. Transdisciplinary research cannot be done as a side-line to disciplinary research. It requires appropriate resources and has to be provided with a separate research assignment

    Fracking is a significant driver of landscape fragmentation - Folgen von Fracking: Ein neuer Schub der Landschaftsfragmentierung ist zu erwarten

    Get PDF
    Mit Fracking greift der Mensch erheblich in die Landschaft ein, vor allem in dicht besiedelten LĂ€ndern wie Deutschland. So trĂ€gt der FlĂ€chenbedarf der unkonventionellen Erdgas- und Erdölförderung stark zur Landschaftsfragmentierung und -zerschneidung bei – mit negativen Folgen fĂŒr Pflanzen- und Tierpopulationen. Zudem konkurriert Fracking mit anderen Landnutzungen wie der Landwirtschaft und dem Naturschutz. Es ist fraglich, ob ein dichtes Infrastrukturnetz an Bohrstellen, das fĂŒr eine wirtschaftliche Nutzung von Fracking notwendig wĂ€re, mit den vielen Restriktionen in Deutschland und Mitteleuropa vereinbar ist. Die FlĂ€cheninanspruchnahme, die strukturellen VerĂ€nderungen der Landschaft und der sehr hohe Wasserbedarf hĂ€tten erhebliche Konsequenzen, unter anderem: - fĂŒr die LebensrĂ€ume von Tieren und Pflanzen durch eine noch weiter erhöhte Fragmentierung, - auf die LandschaftsĂ€sthetik, die gerade in Tourismus- regionen sehr wichtig ist, - fĂŒr die LĂ€rmbelastung von bisher ruhigen Landschaftsteilen durch die Bohrungen, Kompressoren im Dauerbetrieb, Zufahrtsverkehr und Baufahrzeuge. Bei der weiteren PrĂŒfung der GenehmigungsfĂ€higkeit von Fracking in Deutschland und in der EU mĂŒssen die Auswirkungen auf die Landschaft einbezogen und vertieft untersucht werden, vor allem die kumulativen Wirkungen. In einer zukĂŒnftigen Gesamtbewertung muss Landschaft angemessen berĂŒcksichtigt werden, genauso wie Gesundheitsrisiken, Landnutzungskonkurrenzen und die KompatibilitĂ€t mit ĂŒbergeordneten energie- und klimapolitischen Zielen

    Editorial: Fracking and urban sprawl: In what sorts of landscapes do we want to live? - Editorial: Fracking und Zersiedelung: In welchen Landschaften wollen wir leben?

    Get PDF
    Der deutsche Bundestag hat am 24. Juni 2016 den von der Koalition ausgehandelten Kompromiss zum Thema Fracking mit großer Mehrheit angenommen. Die neuen Vorschriften setzen der hochumstrittenen Technologie in Deutschland engere Grenzen als bisher. Ein Moratorium fĂŒr mindestens fĂŒnf Jahre verbietet „unkonventionelles“ Fracking. Eine wissenschaftliche Untersuchung der Folgen von Fracking auf die Landschaft ist dringend nötig – und eine wachere Diskussion dieser Folgen in der Öffentlichkeit. Denn Fracking wirft nicht nur die Frage auf, welches Wasser wir und unsere Nachkommen trinken werden – sondern auch die, in welchen Landschaften wir kĂŒnftig leben wollen. Die Diskussion dieser Frage hat in Deutschland gerade erst begonnen; sie wird hoffentlich dazu fĂŒhren, dass bei der ÜberprĂŒfung des Verbots von unkonventionellem Fracking im Jahr 2021 die Landschaft angemessen berĂŒcksichtigt wird. Transformative Wissenschaft ist gefragt, zu dieser Diskussion einen Beitrag zu leisten

    Argumente und Möglichkeiten fĂŒr eine Quantifizierung und ein Monitoring der differenzierten Landnutzung

    Get PDF
    The concept of differentiated land use was formulated already 50 years ago to preserve biodiversity and to maintain or restore the necessary landscape structure. Although it has been anchored in the Federal Nature Conservation Act, there is still no monitoring of its implementation, although the German Advisory Council on the Environment has been calling for this for 25 years. The paper argues that the technical prerequisites for monitoring the differentiated land use are ready today and discusses the conceptual steps necessary. It identifies several dimensions and proposes corresponding indicators of landscape structure, in particular the degree of diversification and the mixing of intensive land uses, the distribution of the size of intensively used areas, the proportion of semi-natural areas (at least 10 %) and the interconnected arrangement of semi-natural areas. Furthermore, the paper discusses suitable reference units and existing data. Finally, we identify remaining gaps in the data basis and discuss the question of defining target values.Das Konzept der differenzierten Landnutzung wurde bereits vor 50 Jahren formuliert, um BiodiversitĂ€t zu erhalten und die dazu erforderliche Landschaftsstruktur zu bewahren oder wiederherzustellen. Es ist zwar im Bundesnaturschutzgesetz verankert worden, aber es fehlt noch immer ein Monitoring seiner Umsetzung, obwohl der SachverstĂ€ndigenrat fĂŒr Umweltfragen dies seit 25 Jahren als notwendig einfordert. Der Beitrag argumentiert, dass die technischen Voraussetzungen fĂŒr ein Monitoring der differenzierten Landnutzung heute bereitstehen, und diskutiert die dafĂŒr nötigen konzeptuellen Schritte. Es werden verschiedene Dimensionen bestimmt und entsprechende Indikatoren der Landschaftsstruktur vorgeschlagen, insbesondere zum Grad der Diversifizierung und der Durchmischung der intensiven Landnutzungen, zur SchlaggrĂ¶ĂŸenverteilung intensiv genutzter FlĂ€chen, zum FlĂ€chenanteil naturnaher FlĂ€chen (mindestens 10 %) und zur vernetzten Anordnung der naturnahen FlĂ€chen. Des Weiteren diskutiert der Aufsatz geeignete Bezugseinheiten und vorhandene Daten. Abschließend werden verbleibende LĂŒcken in den Datengrundlagen identifiziert und die Frage der Definition von Zielwerten erörtert

    Wozu Umweltforschung? - Über das SpannungsverhĂ€ltnis zwischen Forschungstraditionen und umweltpolitischen Leitbildern. Teil I: Das Beispiel "Ökologische Chemie"

    Get PDF
    We investigate the kinds of questions asked by environmental scientists. To this end, we describe the orientation of scientific research by posing four questions: What is the lack of knowledge to be addressed by the research? What is the purpose of the results? What are the subjects the research is dealing with? What are the methods chosen for the investigation? We propose that problem-oriented environmental science should strive to find answers to these questions that are different from those offered by "classical" natural sciences. As a focus of our study, we select four fields where the answers to the orienting questions are relevant: (1) reflexivity and "reflexive science" (Ulrich Beck), (2) dealing with uncertainty and missing knowledge, (3) competing internal scientific goals and external orientations such as sustainability, (4) the relationship between environmental sciences and politics. As a case study, we investigate the historical development of ecological chemistry. This development can be divided into three phases: an initial phase, an independent phase, and a re-orientation phase. Different internal and external orientations governed the scientific research in these three phases. This example provides insight into the problem of competing internal and external orientations; as a possible solution, we propose a scientific orientation open to societal concerns (to be continued in a follow-up paper by Boeschen et al. 2001 in GAIA 10(3), pp. 203-212)

    Wozu Umweltforschung? - Über das SpannungsverhĂ€ltnis zwischen Forschungstraditionen und umweltpolitischen Leitbildern. Teil II: Zum Leitbild "Reflexive Umweltforschung"

    Get PDF
    In the treatment of environmental problems, there is often a discrepancy between the needs of planners and decision makers and the results provided by scientific research. This discrepancy is related to the different aims, priorities, and codes of practice of scientists, on the one hand, and decision- and policy-makers, on the other hand. To explore how this discrepancy could be reduced to some extent, we first introduce the distinction between knowledge-oriented and decision-oriented reduction of complexity. The challenge today's environmental research is faced with is that, to some extent, decision-oriented reduction of complexity should be incorporated in the selection and solution of scientific problems. This can be achieved by orientation towards societal guiding principles such as sustainability or the precautionary principle. Following this approach, we then introduce the guiding principle of “reflexive environmental research” and point out how it differs from the guiding principles of “classical scientific research”. Key elements of reflexive environmental research are: reflection of guiding ideas external to science (e.g. sustainability); addressing explicitly the uncertainty and openness of scientific results and forecasts; transdisciplinarity; the aim of contributing to the solution of complex and controversial real-world problems; adherence to relevant scientific standards. Finally, we discuss the way reflexive environmental research can contribute to scientific consulting in decision-making processes in both business and politics

    Mitigation measures for small and medium mammals along Highway 175. Bulletin No. 7 – January 2016

    Get PDF
    In recent decades in North America, the number of roads has been steadily increasing. This deployment is not without consequences. The roads are now considered as a major source of disturbance for wildlife. In addition to decreasing the quantity and quality of habitat, they often create a barrier to wildlife movements. The most observable effect is the daily wildlife mortality, or roadkills, associated with attempts to cross the road. To reduce the harmful effects of roads on wildlife populations, several types of mitigation measures have been implemented in many countries such as wildlife passages and exclusion fencing. However, in most cases, these measures are put in place for large animals such as ungulates and large carnivores, because they represent a potentially deadly danger to motorists. So far, very few mitigation measures have been designed and implemented to specifically protect small and medium-sized mammals

    Monitoring the use and effectiveness of wildlife passages for small and medium-sized mammals along Highway 175: Main results and recommendations - News Bulletin no 8

    Get PDF
    Roads and traffic negatively impact many wildlife populations because they increase wildlife mortality, are barriers to animal movement and reduce the amount and quality of available habitat. There is increasing concern about the reduction in connectivity for wildlife across roads. During the widening of Highway 175 between QuĂ©bec City and Saguenay from two to four lanes (in 2006 - 2011), 33 wildlife underpasses for medium-sized and small mammals were constructed along the highway between km 60 and km 144. They are among the first designated wildlife passages for medium-sized and small mammals in the province of QuĂ©bec. Our research project had three main objectives: To characterize the locations and rates of vehicle collisions with medium-sized and small mammals and to evaluate the changes in the frequency of highway-related mortality due to the mitigation measures. To determine the performance of the four types of wildlife passages for medium-sized and small mammals. To assess how well the mitigation measures provide for the permeability of the highway for individuals and for gene flow across the road, with a focus on the American marten. Based on the results, we provide 16 recommendations, 9 of which relate to possible improvements of road mitigation measures and 7 relate to monitoring and research. Making good use of the large research potential of HW 175 can make an important contribution to improved knowledge about the effectiveness of road mitigation. The HWY 175 is particularly suitable for such research for several reasons, e.g., our study provides 4 years of baseline data about small and medium-sized mammals, which is a rare opportunity, and because the high numbers of animals being killed on HWS 175 result in larger sample sizes and in faster detection of the wildlife responses to modifications to the mitigation measures than in areas with lower wildlife mortality. The implementation of 33 wildlife passages for small and medium-sized fauna along HW 175 represents an important step in the right direction. The results of this study demonstrate a major success for the existing wildlife passages along HW 175. Driver safety is also an important consideration for small and medium-sized mammals. Road mitigation is also a matter of halting biodiversity decline (as required by the internationally defined Aichi biodiversity targets set by the Convention on Biological Diversity, CBD) and of ensuring long-term maintenance of ecosystem services. Measures for road mitigation can be implemented effectively only if there is an awareness of the issue. Decision-makers and the general public alike should, therefore, be made more aware of the short-term and long-term ecological effects of roads and need to be informed about suitable mitigation measures. Many road agencies have “environmental sustainability” as one of their goals and the only way to achieve such goal is to establish collaborative links between transportation agencies and ecologists and to support long-term and credible scientific research (van der Ree et al. 2011)
    • 

    corecore