1,141 research outputs found

    Abalone visceral extract inhibit tumor growth and metastasis by modulating Cox-2 levels and CD8+ T cell activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abalone has long been used as a valuable food source in East Asian countries. Although the nutritional importance of abalone has been reported through <it>in vitro </it>and <it>in vivo </it>studies, there is little evidence about the potential anti-tumor effects of abalone visceral extract. The aim of the present study is to examine anti-tumor efficacy of abalone visceral extract and to elucidate its working mechanism.</p> <p>Methods</p> <p>In the present study, we used breast cancer model using BALB/c mouse-derived 4T1 mammary carcinoma and investigated the effect of abalone visceral extract on tumor development. Inhibitory effect against tumor metastasis was assessed by histopathology of lungs. Cox-2 productions by primary and secondary tumor were measured by real-time RT-PCR and immunoblotting (IB). Proliferation assay based on [<sup>3</sup>H]-thymidine incorporation and measurement of cytokines and effector molecules by RT-PCR were used to confirm tumor suppression efficacy of abalone visceral extract by modulating cytolytic CD8+ T cells. The cytotoxicity of CD8<sup>+ </sup>T cell was compared by JAM test.</p> <p>Results</p> <p>Oral administration of abalone visceral extract reduced tumor growth (tumor volume and weight) and showed reduced metastasis as confirmed by decreased level of splenomegaly (spleen size and weight) and histological analysis of the lung metastasis (gross analysis and histological staining). Reduced expression of Cox-2 (mRNA and protein) from primary tumor and metastasized lung was also detected. In addition, treatment of abalone visceral extract increased anti-tumor activities of CD8<sup>+ </sup>T cells by increasing the proliferation capacity and their cytolytic activity.</p> <p>Conclusions</p> <p>Our results suggest that abalone visceral extract has anti-tumor effects by suppressing tumor growth and lung metastasis through decreasing Cox-2 expression level as well as promoting proliferation and cytolytic function of CD8<sup>+ </sup>T cells.</p

    Analgesic effect of highly reversible ω-conotoxin FVIA on N type Ca2+ channels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>N-type Ca<sup>2+ </sup>channels (Ca<sub>v</sub>2.2) play an important role in the transmission of pain signals to the central nervous system. ω-Conotoxin (CTx)-MVIIA, also called ziconotide (Prialt<sup>®</sup>), effectively alleviates pain, without causing addiction, by blocking the pores of these channels. Unfortunately, CTx-MVIIA has a narrow therapeutic window and produces serious side effects due to the poor reversibility of its binding to the channel. It would thus be desirable to identify new analgesic blockers with binding characteristics that lead to fewer adverse side effects.</p> <p>Results</p> <p>Here we identify a new CTx, FVIA, from the Korean <it>Conus Fulmen </it>and describe its effects on pain responses and blood pressure. The inhibitory effect of CTx-FVIA on N-type Ca<sup>2+ </sup>channel currents was dose-dependent and similar to that of CTx-MVIIA. However, the two conopeptides exhibited markedly different degrees of reversibility after block. CTx-FVIA effectively and dose-dependently reduced nociceptive behavior in the formalin test and in neuropathic pain models, and reduced mechanical and thermal allodynia in the tail nerve injury rat model. CTx-FVIA (10 ng) also showed significant analgesic effects on writhing in mouse neurotransmitter- and cytokine-induced pain models, though it had no effect on acute thermal pain and interferon-γ induced pain. Interestingly, although both CTx-FVIA and CTx-MVIIA depressed arterial blood pressure immediately after administration, pressure recovered faster and to a greater degree after CTx-FVIA administration.</p> <p>Conclusions</p> <p>The analgesic potency of CTx-FVIA and its greater reversibility could represent advantages over CTx-MVIIA for the treatment of refractory pain and contribute to the design of an analgesic with high potency and low side effects.</p

    Reversible Pulmonary Hypertension in Adolescent with Left Atrial Myxoma

    Get PDF
    We report a patient of left atrial huge myxoma presenting with severe pulmonary hypertension in adolescents. A patient was a 14-year-old boy presented with sudden onset dyspnea. Transthoracic echocardiographic study revealed the presence of a nodular, 4.34 × 8.11 cm sized, mobile, hyperechoic mass in the left atrium and severe pulmonary hypertension with tricuspid insufficiency. After surgical therapy, tricuspid regurgitation and pulmonary hypertension was decreased and the patient was stabilized and had an uneventful clinical course

    Acetylation changes tau interactome to degrade tau in Alzheimer’s disease animal and organoid models

    Get PDF
    © 2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.Alzheimer&apos;s disease (AD) is an age-related neurodegenerative disease. The most common pathological hallmarks are amyloid plaques and neurofibrillary tangles in the brain. In the brains of patients with AD, pathological tau is abnormally accumulated causing neuronal loss, synaptic dysfunction, and cognitive decline. We found a histone deacetylase 6 (HDAC6) inhibitor, CKD-504, changed the tau interactome dramatically to degrade pathological tau not only in AD animal model (ADLPAPT) brains containing both amyloid plaques and neurofibrillary tangles but also in AD patient-derived brain organoids. Acetylated tau recruited chaperone proteins such as Hsp40, Hsp70, and Hsp110, and this complex bound to novel tau E3 ligases including UBE2O and RNF14. This complex degraded pathological tau through proteasomal pathway. We also identified the responsible acetylation sites on tau. These dramatic tau-interactome changes may result in tau degradation, leading to the recovery of synaptic pathology and cognitive decline in the ADLPAPT mice11Nsciescopu

    Efficacy of fixed-dose amlodipine and losartan combination compared with amlodipine monotherapy in stage 2 hypertension: a randomized, double blind, multicenter study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this trial was to compare the blood-pressure lowering efficacy of amlodipine/losartan combination with amlodipine monotherapy after 6 weeks of treatment in Korean patients with stage 2 hypertension.</p> <p>Results</p> <p>In this multi-center, double-blind, randomized study, adult patients (n = 148) with stage 2 hypertension were randomized to amlodipine 5 mg/losartan 50 mg or amlodipine 5 mg. After 2 weeks, patients with systolic blood pressure (SBP) > 140 mmHg were titrated to amlodipine 10 mg/losartan 50 mg or amlodipine 10 mg. After 4 weeks of titration, hydrochlorothiazide 12.5 mg could be optionally added to both groups. The change from baseline in SBP was assessed after 6 weeks. The responder rate (defined as achieving SBP < 140 mmHg or DBP < 90 mmHg) was also assessed at 2, 6 and 8 weeks as secondary endpoints. Safety and tolerability were assessed through adverse event monitoring and laboratory testing. Baseline demographics and clinical characteristics were generally similar between treatment groups. Least-square mean reduction in SBP at 6 weeks (primary endpoint) was significantly greater in the combination group (36.5 mmHg vs. 31.6 mmHg; p = 0.0117). The responder rate in SBP (secondary endpoints) was significantly higher in the combination group at 2 weeks (52.1% vs. 33.3%; p = 0.0213) but not at 6 weeks (p = 0.0550) or 8 weeks (p = 0.0592). There was no significant difference between groups in the incidence of adverse events.</p> <p>Conclusion</p> <p>These results demonstrate that combination amlodipine/losartan therapy provides an effective and generally well-tolerated first line therapy for reducing blood pressure in stage 2 hypertensive patients.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01127217">NCT01127217</a></p

    Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cinnamomum cassia </it>bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8<sup>+ </sup>T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model.</p> <p>Methods</p> <p>Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer <it>in vitro </it>and <it>in vivo </it>mouse melanoma model.</p> <p>Results</p> <p>Cinnamon extract strongly inhibited tumor cell proliferation <it>in vitro </it>and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as <it>Bcl-2</it>, <it>BcL-xL </it>and <it>survivin</it>. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed <it>in vitro</it>.</p> <p>Conclusion</p> <p>Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes <it>in vitro </it>and <it>in vivo </it>mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers.</p
    corecore