7,511 research outputs found

    Arcana Capstone Report

    Get PDF
    Our project, Arcana, is an augmented reality based mobile game. This application will promote outdoor activities for both children and adults and provide them with fun and engaging challenges. A user can grow their unique character and progress through puzzles and encounters. This solution will use many advanced areas of computer science, such as augmented reality and cognitive computing, and have many different components like cloud-computing and multiplayer functionality

    Multi-jet electrospinning of polystyrene/polyamide 6 blend: thermal and mechanical properties

    Get PDF
    Citation: Yoon, J. W., Park, Y., Kim, J., & Park, C. H. (2017). Multi-jet electrospinning of polystyrene/polyamide 6 blend: thermal and mechanical properties. Fashion and Textiles, 4, 12. doi:10.1186/s40691-017-0090-4Polystyrene (PS) has high thermal resistance thus can be applied as thermally comfortable textile. However, the application is limited due its low mechanical strength. In this study, polyamide 6 (PA6) was blended with PS to improve the mechanical strength of PS, by means of a multi-jet electrospinning. Content ratio of the blend web was measured by chemical immersion test and confocal microscopy analysis. Fiber content was in accordance with the number of syringes used for PS and PA6 respectively. The effects of content ratio on the web morphology, thermal resistance, tensile behavior, air and water vapor permeability, and surface hydrophilicity were investigated. The influence of environmental humidity during electrospinning process on three dimensional (3D) web structure was also reported. PS web produced from higher humidity had more pores and corrugations at the surface. The increased surface roughness and porosity led to the increased hydrophobicity and thermal resistance. Though the blending of PA6 with PS enhanced the mechanical strength, the added PA6 decreased air/water vapor permeability and thermal resistance. The lowered thermal resistance by the addition of PA6 was mainly attributed to higher thermal conductivity of PA6 material and lowered air content with PA6 fibers

    Antitumor enhancement of celecoxib, a selective Cyclooxygenase-2 inhibitor, in a Lewis lung carcinoma expressing Cyclooxygenase-2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of this study was to determine the effects of a selective Cyclooxygenase (COX)-2 inhibitor on the inhibition of tumor growth and pulmonary metastasis in a Lewis Lung Carcinoma (LLC) animal model.</p> <p>Methods</p> <p>For immunoblot analysis of COX-2 and PGE2, cells were treated with irradiation in the presence or absence of celecoxib. The right thighs of male, 6-week old C57/BL mice were subcutaneously injected with 1 × 10<sup>6 </sup>LLC cells. The animals were randomized into one of six groups: (1) no treatment, (2) 25 mg/kg celecoxib daily, (3) 75 mg/kg celecoxib daily, (4) 10 Gy irradiation, (5) 10 Gy irradiation plus 25 mg/kg celecoxib daily, and (6) 10 Gy irradiation plus 75 mg/kg celecoxib daily. Mice were irradiated only once, and celecoxib was administered orally. Mice were irradiated with 4-MV photons once the tumor volume of the control group reached 500 mm<sup>3</sup>. All mice were sacrificed when the mean tumor volume of control animals grew to 4000 mm<sup>3</sup>. The left lobes of the lungs were extracted for the measurement of metastatic nodules.</p> <p>Results</p> <p>Irradiation resulted in a dose-dependent increase in PGE2 production. PGE2 synthesis decreased markedly after treatment with celecoxib alone or in combination with irradiation. Compared to mice treated with low dose celecoxib, mean tumor volume decreased significantly in mice treated with a high dose of celecoxib with or without irradiation. Mice treated with a high dose celecoxib alone, with irradiation alone, or with irradiation plus celecoxib had markedly fewer metastatic lung nodules than controls. The mean metastatic area was the smallest for mice treated with irradiation plus a high dose celecoxib.</p> <p>Conclusion</p> <p>Oral administration of high dose celecoxib significantly inhibited tumor growth, as compared to a low dose treatment. Radiotherapy in combination with high dose celecoxib delayed tumor growth and reduced the number of pulmonary metastases to a greater extent than celecoxib or radiotherapy alone.</p

    Visfatin exerts angiogenic effects on human umbilical vein endothelial cells through the mTOR signaling pathway

    Get PDF
    AbstractThe biologically active factors known as adipocytokines are secreted primarily by adipose tissues and can act as modulators of angiogenesis. Visfatin, an adipocytokine that has recently been reported to have angiogenic properties, is upregulated in diabetes, cancer, and inflammatory diseases. Because maintenance of an angiogenic balance is critically important in the management of these diseases, understanding the molecular mechanism by which visfatin promotes angiogenesis is very important. In this report, we describe our findings demonstrating that visfatin stimulates the mammalian target of the rapamycin (mTOR) pathway, which plays important roles in angiogenesis. Visfatin induced the expression of hypoxia-inducible factor 1α (HIF1α) and vascular endothelial growth factor (VEGF) in human endothelial cells. Inhibition of the mTOR pathway by rapamycin eliminated the angiogenic and proliferative effects of visfatin. The visfatin-induced increase in VEGF expression was also eliminated by RNA interference-mediated knockdown of the 70-kDa ribosomal protein S6 kinase (p70S6K), a downstream target of mTOR. Visfatin inactivated glycogen synthase kinase 3β (GSK3β) by phosphorylating it at Ser-9, leading to the nuclear translocation of β-catenin. Both rapamycin co-treatment and p70S6K knockdown inhibited visfatin-induced GSK3β phosphorylation at Ser-9 and nuclear translocation of β-catenin. Taken together, these results indicate that mTOR signaling is involved in visfatin-induced angiogenesis, and that this signaling leads to visfatin-induced VEGF expression and nuclear translocation of β-catenin

    Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    Full text link
    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGAS detector for {\alpha} particles under the present conditions is found to be ~ 97.3 %

    PAGaN I: Multi-Frequency Polarimetry of AGN Jets with KVN

    Full text link
    Active Galactic Nuclei (AGN) with bright radio jets offer the opportunity to study the structure of and physical conditions in relativistic outflows. For such studies, multi-frequency polarimetric very long baseline interferometric (VLBI) observations are important as they directly probe particle densities, magnetic field geometries, and several other parameters. We present results from first-epoch data obtained by the Korean VLBI Network (KVN) within the frame of the Plasma Physics of Active Galactic Nuclei (PAGaN) project. We observed seven radio-bright nearby AGN at frequencies of 22, 43, 86, and 129 GHz in dual polarization mode. Our observations constrain apparent brightness temperatures of jet components and radio cores in our sample to >108.01>10^{8.01} K and >109.86>10^{9.86} K, respectively. Degrees of linear polarization mLm_{L} are relatively low overall: less than 10%. This indicates suppression of polarization by strong turbulence in the jets. We found an exceptionally high degree of polarization in a jet component of BL Lac at 43 GHz, with mL∼m_{L} \sim 40%. Assuming a transverse shock front propagating downstream along the jet, the shock front being almost parallel to the line of sight can explain the high degree of polarization.Comment: 14 pages, 17 figures, 4 tables. To appear in JKAS (received 2015 July 27; accepted 2015 October 25). Note the PAGaN II companion paper by J. Oh et a
    • …
    corecore